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Calculus and Differentiation 
Structure 

1.1. Introduction. 
1.2. Differentiation. 
1.3. Differentiation of Logarithmic and Exponential functions. 
1.4. Partial derivatives. 
1.5. Total Differentials. 
1.6. Implicit Functions. 
1.7. Homogeneous Functions. 
1.8. Local Maxima and Local Minima. 
1.9. Check Your Progress. 
1.10. Summary. 

1.1. Introduction. This chapter contains many important results related derivatives, partial derivatives and their 
use to obtain extreme values of a function.  

1.1.1. Objective. The objective of these contents is to provide some important results to the reader like: 

(i) Derivatives. 

(ii) Partial Derivatives. 

(iii) Euler’s Theorem. 

(iv) Maxima and Minima 

1.1.2. Keywords. Continuity, Differentiation, Partial Differentiation, Homogeneous Functions. 

1.2. Differentiation. 

Differentiation is the technique of determining the derivatives of continuous functions and 
derivative is the limit of average rate of change in the dependent function following a change in the 
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value of the variable. Very small change in the value of independent variable is accompanied by a 
very small change in the value of dependent variable. 

Mathematically, we say that y is a function of x or y = f(x). The set of all permissible values of x is 
called Domain of the function and the set of corresponding values of y is called the Range of the 
function. 

1.2.1. Derivative of a function. 

To obtain the derivative of a given function:  

Let 

y = f(x)      (1) 

be the given function of x. 

Given a small increment δx in x, assume δy be the corresponding increment in y so that  

( )y y f x xδ δ+ = +     (2) 

Subtract (1) from (2), we get  

     ( ) ( )y f x x f xδ δ= + −  

Dividing both sides by δx, we get  

     
( ) ( )y f x x f x

x x
δ δ
δ δ

+ −
=    

Proceeding to limits 0xδ →  which gives          

 
0 0

( ) ( )lim lim
x x

dy y f x x f x
dx x xδ δ

δ δ
δ δ→ →

+ −
= =  

On evaluating the limit of equation (5), we get the value of 
dy
dx

 

This method of obtaining derivative is known as differentiation from first principle or by ab-initio 
method or from delta method or from definition.  

1.2.2. Example. The derivative of xn is nxn-1 where n is fixed number, integer or rational. 

Solution. Let     ny x=      (1) 

Let xδ  be a small increment in x and yδ  be the corresponding increment in y, then 

    ny y x xδ δ+ = ( + )     (2) 

Subtracting (1) from (2), we get 

    n ny x x xδ δ= ( + ) −  

dividing both sides by xδ , we have  
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n ny x x x

x x
δ δ
δ δ

( + ) −
=  

Proceeding to limits as 0xδ → , we have  

    1

0
lim . n

x

y n x
xδ

δ
δ

−

→
=  

Using the fact that   1lim .
n n

n

x a

x a n a
x a

−

→

−
=

−
 

Hence     1.n nd x n x
dx

−( ) =  

1.2.3. Example. Find the derivatives of the functions 

(i) x10   (ii) x-9   (iii) x2/3  

Solution.  

(i) Let y = x10, then 910.dy x
dx

= . 

(ii) Let y = x-9, then 109.dy x
dx

−= − . 

(iii) Let y = x2/3, then 
1
32 .

3
dy x
dx

−
= . 

1.2.4. Example. The derivative of nax b( + )  is 1nna ax b −( + )  

Solution. Let  ny ax b= ( + )       (1) 

Let xδ  be a small increment in x and yδ  be the corresponding increment in y, then 

  [ ]ny y a x x bδ δ+ = ( + )+ = [ ]nax b a xδ( + )+     (2)  

Subtracting (1) from (2), we get 

  [ ]n ny ax b a x ax bδ δ= ( + )+ −( + )  

Dividing both sides by xδ , we have  

 
[ ] [ ]n nn nax b a x ax b ax b a x ax by a

x x a x
δ δδ

δ δ δ
( + )+ −( + ) ( + )+ −( + )

= =  

Proceeding to limits as 0xδ → , we have 

[ ] 1

0 0
lim lim

n n
n

x x

ax b a x ax by a na ax b
x a xδ δ

δδ
δ δ

−

→ →

( + )+ −( + )
= = ( + )     

Hence, 1ndy na ax b
dx

−= ( + ) . 
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1.2.5. Example. Find the derivative of x2 + 3x w.r.t. ‘x’ by using the first principle.  

Solution. Let   2 3y x x= +        (1) 

Let δx be small increment in x and δy be the corresponding increment in y, then 

   ( ) ( )2 3y y x x x xδ δ δ+ = + + +     (2) 

Subtracting (1) from (2), we get  

    ( )2 2 3( )y x x x xδ δ δ δ= + +  

Dividing both sides by xδ , we get  

    2 3y x x
x

δ δ
δ

= + +  

Proceeding to limits as 0xδ → , we get 

    
0

lim 2 3
x

y x
xδ

δ
δ→

= +  

Hence   2 3dy x
dx

= +  

1.2.6. Example. Find the derivative of 
1x
x

+ w.r.t. ‘x’.  

Solution. Let 11y x x x
x

−= + = +  then, 1 1 1 1
2

11. ( 1) 1dy x x
dx x

− − −= + − = − . 

1.2.7. Example. Differentiate 3
2

1x
x

+  w.r.t. ‘x.  

Solution. Let 
1 3
2 2

3
2

1y x x x
x

−
= + = + , then 

1 3 1 51 1
2 2 2 21 3 1 3

2 2 2 2
dy x x x x
dx

− − − − − = + − = − 
 

.   

1.2.8. Results. 

1. ( ) 0d c
dx

=  where c is constant function. 

2. [ ] [ ]. ( ) . ( )d dc f x c f x
dx dx

=  where ‘c’ is constant. 

3. If u and v are differentiable functions of ‘x’ then ( ) ( ) ( )d d du v u v
dx dx dx

+ = +  and 

( ) ( ) ( )d d du v u v
dx dx dx

− = − . 

4. Product Rule for differentiation. If u,v and w are functions of x then  

  (i) ( . )d d du v u v v u
dx dx dx

= +   
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(ii) ( . . ) ( ) ( ) ( )d d d du v w vw u wu v uv w
dx dx dx dx

= + +  

5. Quotient Rule for Differentiation. If u and v are functions of x and v ≠ 0 then  

2

( )d dv u u vd u dx dx
dx v v

−  = 
 

. 

6. Chain Rule. If y = f(u) and u = φ(x) then 
dy dy du
dx du dx

= . 

7. If ( ) , ( ) and ( )y f u u g v v xφ= = =  are three differentiable function, then by chain rule, we 
have  

    dy dy du dy du dv dy du dv
dx du dx du dv dx du dv dx

 = = =  
 

 that is,   . .dy dy du dv
dx du dv dx

= . 

1.2.9. Example. Differentiate m nx a x b( + ) ( + )  w.r.t. x 

Solution. Let   m ny x a x b= ( + ) ( + ) , then using the product rule of differentiation, we have 

   m n n mdy d dx a x b x b x a
dx dx dx

= ( + ) ( + ) + ( + ) ( + )  

   = 1 1. .1 . .1m n n mx a n x b x b m x b− −( + ) ( + ) + ( + ) ( + )  

   = [ ]1 1.m nx a x b n x a m x b− −( + ) ( + ) ( + )+ ( + )  

   = [ ]1 1m nx a x b m n x an bm− −( + ) ( + ) ( + ) + + . 

1.2.10. Example. Differentiate 
ax b
cx d

+
+

 w.r.t. x 

Solution. Let ax by
cx d

+
=

+
, then by quotient rule of differentiation, we have 

  2

d dcx d ax b ax b cx ddy dx dx
dx cx d

( + ) ( + )−( + ) ( + )
=

( + )
 

   = 2

0 0cx d a ax b c
cx d

( + )( + )−( + )( + )
( + )

 2 2

acx ad acx bc ad bc
cx d cx d

+ − − −
= =

( + ) ( + )
. 

1.2.11. Example. If 2 26 , 75 , 6 17y u u u v v x= + + = + = + , then find 
dy
dx

.  

Solution. We have 2 1, 2 , 6dy du dvu v
du dv dx

= + = =  
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By chain rule    ( )2(2 1) (2 ) (6) 2 75 1 12dy dy du dv u v v v
dx du dv dx

 = = + = + +   

     = ( ) ( ) ( )2212 2 151 12 6 17 2 6 17 11v v x x + = + + +  . 

1.2.12. Exercise. Find the derivatives of the following functions w.r.t. x by using first principle. 

1. 4x   2. 9 10x+   3. 2 10 80x x+ +  

4. 
4
5x    5. 

1
4x

−
   6. 2

x
 

7. 2

1x
x
+   8. 

1
4 1x

x
+    9. 2 7x +  

10. 4(7 6)x −+  11. 
ax b
cx d

+
+

   12. 3
2

12
2

x
x

+ . 

13. If 
2 3

1 ... , then show that 0
1! 2! 3! ! !

n nx x x x dy xy y
n dx n

= + + + + + − + = . 

Answers. 
1. 4x3  2. 9   3. 2x + 10 

4. 1
5

4

5x
   5. 

5
41

4
x
−

−   6. 3
2

1

x
−  

7. 2 3

1 1
x x

− −  8. 3 2
4

1 1

4 xx
−   9. 1

2 7x +
 

10. 
( )5

28
7 6x

−
+

 11. 2

ad bc
cx d

−
( + )

  12. 5
2

12
2x

− . 

1.2.13. Exercise. Differentiate w.r.t. x the following: 

1. 2 21 4x x x( + )( + + )  2. 23x x x x( − )( + )  3. 2

3
1

x
x
+
+

 

4. 3 2
5 2 1 3

x
x x

+
( + )( + ) +

 5. 3 22 5 , 3 1 and 9 1y v v v u u x= + + = + = +  

Answers.  

1. 3 24 3 10 1x x x+ + +  2. 22 2 3 3x x x( − − )  3. 
2

2 2

1 6
1

x x
x
− −
( + )

 

4. 
2

2 2

6 8 2
2 11 8

x x
x x
− − +
( + + )

 5. ( )227 2187 756 64x x+ +  
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1.3. Differentiation of Logarithmic and Exponential functions. 

1.3.1. Exponential function. If ‘a’ be any positive real number then y = ax is called an exponential 
function where x R∈ . When a = e, then xy e=  is called exponential function.  

1.3.2. Derivative of Exponential function. logu u
e

d dua a a
dv dv

( ) = . 

Also when a = e, then logx x
e

d a a a
dv

= .   

In particular, when u = x then x xd e e
dx

( ) = .  

1.3.3. Derivative of Logarithmic Function.  

If u is any differentiable function of x, then  

    
1log loga a

d du e u
dx u dx

= ( )  

In particular, when u = x then 
1logd x

dx x
( ) = . 

1.3.4. Some Properties of Logrithm.  

(i) log . log loga a am n m n( ) = +    (ii) log log loga a a
m m n
n
= −  

(iii) log logn
a am n m=     (iv) log log . loga b am m b=  

(v) loglog
logb

aa
b

=  

1.3.5. Example. Differentiate the following functions w.r.t. ‘x’  

(i) 5 3xe +    (ii) 
xee   (iii) 5 78 x+  

Solution. (i) Let y = 5 3xe + , then  5 3 5 3 5 3(5 3) 5x x xdy d d xe e e
dx dx dx

+ + ++
= = = . 

(ii) Let y = 
xee , then 

x x x
x

e e x edy d dee e e e
dx dx dx

= = = . 

(iii) Let y = 5 78 x+ , then 5 7 5 7 5 7(5 7)(8 ) 8 log8 (5log8)8x x xdy d d x
dx dx dx

+ + ++
= = = . 

1.3.6. Exercise. Differentiate the following functions w.r.t. ‘x’: 

1. ( )2 2log x a x+ +  2. ( )4log log log x    3. ( )2log 1xe x+  
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4. (i) If 
x x

x x

e ey
e e

−

−

−
=

+
, then prove that 21dy y

dx
= −  

  (ii) If ( )log 1 1y x x= − − + , then prove that 
2

1
2 1

dy
dx x

−
=

−
 

  (iii) If ( 1) log ( 1) ( 1) log ( 1)y x x x x= − − − + + , then prove that 1log
1

dy x
dx x

− =  + 
. 

Answer. 

1. 
2 2

1
a x+

  2. 
( ) ( )4 4

4
log log logx x x  

 3. ( )2
2

2 log 1
1

x xe x
x

 + + + 
 

1.4. Partial derivatives. 

Let f be a function of two or more variables. The derivative of f w.r.t. one independent variable, while 
considering all other independent variables constant, is called the partial derivative of f w.r.t. that 
variable. 

If ( , )f x y  is a function of two independent variables x and y, then the partial derivative of f(x,y) w.r.t. x 

is the derivative of ( , )f x y  when y is regarded as constant. It is denoted by or x
f f
x
∂
∂

 or Dx f. Thus, 

0

( , ) ( , )lim
h

f f x h y f x y
x h→

∂ + −
=

∂
. 

Similarly, the partial derivative of ( , )f x y  w.r.t. y is defined as  
0

( , ) ( , )lim
k

f f x y k f x y
y k→

∂ + −
=

∂
. 

This definition can be extended to a function of having more than two independent variables.  

1.4.1. Second order partial derivatives. If ( , )f x y  has partial derivatives at each point, then 

andf f
x y
∂ ∂
∂ ∂

 are themselves functions of x and y, which may also have partial derivatives, known as 

second order partial derivatives. These second derivatives are denoted by  

     
2

2 xx
f f f

x x x
∂ ∂ ∂  = = ∂ ∂ ∂ 

 

     
2

yx
f f f

y x y x
∂ ∂ ∂  = = ∂ ∂ ∂ ∂ 

 

    
2

xy
f f f

x y x y
 ∂ ∂ ∂

= = ∂ ∂ ∂ ∂ 
 

     
2

2 yy
f f f

y y y
 ∂ ∂ ∂

= = ∂ ∂ ∂ 
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1.4.2. Remark. Generally 
2 2f f

y x x y
∂ ∂

≠
∂ ∂ ∂ ∂

. But here we will deal with only those functions for which 

2 2f f
y x x y
∂ ∂

=
∂ ∂ ∂ ∂

. Also, all the results stated for ordinary differentiation, like chain rule, product rule, 

quotient rule etc., are valid for partial differentiation.  

1.4.3. Example. Find the all the first and second order partial derivatives of 5 5 22x y ax y xy+ − + . 

Solution. Let 5 5 22u x y ax y xy= + − + , then 

    45 4u x axy y
x
∂

= − +
∂

,  4 25 2u y ax x
y
∂

= − +
∂

 

    
2

3
2 20 4u x ay

x
∂

= −
∂

,  
2

3
2 20u y

y
∂

=
∂

 

   
2

4 1u ax
x y
∂

=− +
∂ ∂

,  
2

4 1u ax
y x
∂

=− +
∂ ∂

 

1.4.4. Exercise. 

1. If ( )2 2logu x y= + , then prove that  
2 2

2 2 0u u
x y

∂ ∂
+ =

∂ ∂
 and  

2 2u u
x y y x
∂ ∂

=
∂ ∂ ∂ ∂

 

2. For the function y xz x y= +  verify that 
2 2z z

x y y x
∂ ∂

=
∂ ∂ ∂ ∂

.  

3. If y yu x
x x

φ ψ   = +   
   

, prove that 
2 2 2

2 2
2 22 0u u ux xy y

x x y y
∂ ∂ ∂

+ + =
∂ ∂ ∂ ∂

.  

4. If ( ) ( )2 2 2 2 2 2 23 and 1u lx my nz x y z l m n= + + − + + + + = . Show that  
2 2 2

2 2 2 0u u u
x y z
∂ ∂ ∂

+ + =
∂ ∂ ∂

. 

5. Find the first and second order partial derivative of ylogx. 

6. If 3 0z xz y− − = , prove that 
( )

2 2

32

3

3

z z x
x y z x

∂ +
= −

∂ ∂ −
. 

7. Find the value of 
2 2

2 2 2 2

1 1z z
a x b y

∂ ∂
+

∂ ∂
 when 2 2 2 2 2 2 0a x b y c z+ − = . 

8. If x y zu e= , show that ( )
3

2 2 21 3 x y zu xyz x y z e
x y z
∂

= + +
∂ ∂ ∂

.If yu f
x

 =  
 

, show that 

0u ux y
x y
∂ ∂

+ =
∂ ∂ .  
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1.5. Total Differentials. 

1.5.1. Total differential of a function. If ( , )z f x y= , then the total differential of z is defined by 
z zdz dx dy
x y
∂ ∂

= +
∂ ∂

 and is denoted by dz. 

Now we will try to obtain total derivative of a given composite function. 

1.5.2. Theorem. Let ( , )z f x y=  be a function having continuous first order partial derivatives and 

( ), ( )x t y tφ ψ= =  have continuous derivatives. Then dz z dx z dy
dt x dt y dt

∂ ∂
= +
∂ ∂

. 

Proof. Let t be given a small increment δt and the corresponding changes in z, x and y be δz, δx and δy 
respectively. Then, we have 

       ( ),z z f x x y yδ δ δ+ = + +  

  ⇒ ( ) ( ), ,z f x x y y f x yδ δ δ= + + −  

  ⇒ ( ) ( ) ( ) ( ), , , ,z f x x y y f x y y f x y y f x yδ δ δ δ δ= + + − + + + −         

 ⇒ ( ) ( ) ( ), , , ( , )f x x y y f x y y f x y y f x yz
t t t

δ δ δ δδ
δ δ δ

+ + − + + −   
= +   
   

  

   = ( ) ( ), , ( , ( , )f x x y y f x y y x f x y y f x y y
x t y t

δ δ δ δ δ δ
δ δ δ δ

+ + − +   + −
+   
  

 (1) 

Let 0 , so that 0 and 0t x yδ δ δ→ → → . 

Now,  ( )
0

, ( , )
lim
y

f x y y f x y f z
y y yδ

δ
δ→

+ − ∂ ∂
= =
∂ ∂

  

and  
0

( , ) ( , )lim
x

f x y y f x y y f z
y x xδ

δ δ
δ→

+ − + ∂ ∂
= =
∂ ∂

 

Since andx yδ δ  are increments in x, y corresponding to t, therefore, both tend to zero as δt tends to zero. 
Due to the continuity of f and its partial derivatives (1) becomes 

  dz z dx z dy
dt x dt y dt

∂ ∂
= +
∂ ∂

. 

1.5.3. Remark. 

1. Here dz
dt

 is called total derivative of z . 

2. If z = ( )1 2, ,..., nf x x x  where 1 2, ,..., nx x x  are all functions of some variable t, then  



Calculus & Differentiation 11 

    1 2

1 2

... n

n

dxdx dxdz z z z
dt x dt x dt x dt

∂ ∂ ∂
= + + +
∂ ∂ ∂

. 

3. If z = f(x, y), and y = f(x), then  

    dz z dx z dy
dx x dx y dx

∂ ∂
= +
∂ ∂

 

  ⇒   dz z z dy
dx x y dx

∂ ∂
= +
∂ ∂

. 

4. If z = 1 1 2( , ) and ( , )f x y x f t t=  and ( )2 1 2,y f t t= , then  

    
1 1 1

z z x z y
t x t y t
∂ ∂ ∂ ∂ ∂

= +
∂ ∂ ∂ ∂ ∂

 

    
2 2 2

z z x z y
t x t y t
∂ ∂ ∂ ∂ ∂

= +
∂ ∂ ∂ ∂ ∂

 

1.5.4. Example. If 2 2 2, , 2z xy x y x at y at= + = = , then find 
dz
dt

. 

Solution. Since 2 2 2 2   2 , 2z zz xy x y y xy xy x
x y
∂ ∂

= + ⇒ = + = +
∂ ∂

  

Also, 2 , 2dx dyat a
dt dt

= = . Thus, 

( ) ( )

( ) ( )
( )

2 2

2 2 2 3 2 3 2 4

3 3 4

2 2 2 2

4 4 2 4 2

16 10

dz z dx z dy y xy at xy x a
dt x dt y dt

a t a t at a t a t a

a t t

∂ ∂
= + = + + +
∂ ∂

= + + +

= +

 

1.6. Implicit Functions. If x and y are connected by a functional relation ( , )f x y c= , then this is called 
implicit function of x and y. 

Consider ( , )f x y c= . To find 
dy
dx

, first express y in terms of x and then differentiate w.r.t. x. However, 

in case of implicit functions it is impossible to express y in terms of x, we will use the forthcoming method 

to find 
2

2anddy d y
dx dx

. 

Method to Find dy
dx

. 

Let ( , )u f x y=  be a function of x and y, then 
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   du u u dy
dx x y dx

∂ ∂
= +
∂ ∂

       (1) 

If we are given an implicit function of x and y of the form  
   ( , )u f x y c= =  

Then.   0du
dx

= . 

Hence from (1), we have 

  0u u dy
x y dx
∂ ∂

+ =
∂ ∂

 

  Or x

y

u f
fdy x x

u fdx f
y y

∂ ∂
∂ ∂= − = − =−
∂ ∂
∂ ∂

. 

Method to Find 
2

2

d y
dx

. 

Since   

f
dy x

fdx
y

∂
∂= −
∂
∂

        (2) 

Denote 
2 2 2

2 2, , , andf f f f f
x y x x y y
∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂

 by p, q, r, s and t respectively. Then equation (2) becomes 

dy p
dx q

= −  

Using product rule of differentiation 

   
2

2 2

dp dqq pd y dx dx
dx q

−
= −       (3) 

But   
2 2

2

dp p p dy f f y
dx x y dx x y x dx

∂ ∂ ∂ ∂ ∂
= + = +
∂ ∂ ∂ ∂ ∂

 = pr s
q

 
+ − 

 
 

that is,   dp qr ps
dx q

−
=  

Also   
2 2

2

dq q q dy f f dy ps t
dx x y dx x y y dx q

 ∂ ∂ ∂ ∂
= + = + = + − ∂ ∂ ∂ ∂ ∂  

 

that is,  dq sq pt
dx q

−
=  

Using these in (3), we obtain  

   
2 2 2

2 3

2d y q r pqs p t
dx q

− +
= −  
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which can be written as:  
2 22

2 3

2xx y xy x y yy x

y

f f f f f f fd y
dx f

− +
= − . 

1.6.1. Example. If 3 2 33 0y ax x− + = , then find 
dy
dx

 and 
2

2

d y
dx

. 

Solution. Let 3 2 3( , ) 3 0f x y y ax x= − + =  

Then,  26 3xf a x= − + , 6 6xxf a x= − + , 23yf y= , 6yyf y= , 0xyf = . 

Now,  
2 2

2 2

6 3 2
3

x

y

fdy ax x ax x
dx f y y

+ −
= − = − = , and       

 

2 22

2 3

4 2 2 2 2

2 3

4 4 2 2 4 3

6

3 3 2 2 4 3

6

3 3 2 2 4 3
5

2

( 6 6 )(9 ) 2( 6 3 )(3 )(0) 6 ( 6 3 )
(3 )

54 54 6 (36 9 36 )
27

54 [ 4 4 ]
27

2 4 4

xx y xy x y yy x

y

f f f f f f fd y
dx f

a x y ax x y y ax x
y

ay xy y a x x ax
y

y ay xy a x x ax
y

ay xy a x x ax
y

− +
= −

− + − − + + − +
= −

− + + + −
= −

− + + + −
= −

 = − − + + + − 

  

Replacing 3 2 33y ax x= −  in numerator, we get 

  

2
2 3 2 3 2 2 4 3

2 5

2 2
2 2

5 5

2 (3 ) (3 ) 4 4

2 2

d y a ax x x ax x a x x ax
dx y

a xa x
y y

 = − − − + − + + − 

 = − = − 

 

1.6.2. Example. If ( , ) 0, ( , ) 0f x y y zφ= = , show that f dz f
y z dx x y

φ φ∂ ∂ ∂ ∂
=

∂ ∂ ∂ ∂
. 

Solution. If ( ), 0f x y = , then 

f
xd y

d x f
y

 ∂
 ∂ =−
 ∂
 ∂ 

 and for ( ), 0y zφ = , then 
ydz

dy
z

φ

φ

 ∂
 ∂ =−
 ∂
 ∂ 

. 

Multiplying both, we have 

  .

f
x ydy dz

dx dy f
y z

φ

φ

 ∂ ∂ 
  ∂ ∂  =
 ∂ ∂ 

  ∂ ∂  
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 or .f d z f
y z d x x y

φ φ     ∂ ∂ ∂ ∂
=     ∂ ∂ ∂ ∂     

 

1.6.3. Exercise. 

1. Find ,dz
dt

when 2 2 2; , 2z xy x y x at y at= + = = . 

2. If u = ( , , )f y z z x x y− − − , show that 0u u u
x y z
∂ ∂ ∂

+ + =
∂ ∂ ∂

. 

3. If 2 2 2 , where , ,x y yz u v w u ye v xe w
x

−= + + = = =  find andz z
x y
∂ ∂
∂ ∂

. 

4. Let ( , ) and ,z f x y u v=  are two variables given by ,u lx my v ly mx= + = −  show that 

( )
2 2 2 2

2 2
2 2 2 2

z z z zl m
x y u v

 ∂ ∂ ∂ ∂
+ = + + ∂ ∂ ∂ ∂ 

. 

5. If 2 2 , 2 find , , ,u u v vx u v y uv
x y x y
∂ ∂ ∂ ∂

= − =
∂ ∂ ∂ ∂

. 

6. If sin , cosv vx u e u y v e u− −= + = +  prove that u v
y x
∂ ∂

=
∂ ∂

. 

7. Find 
dy
dx

 if y x bx y a+ = . 

8. Find 
2

5 5 3
2 if 5 0d y x y a xy

dx
+ − = . 

9. Find 
2 2 22
3 3 3

2 ifd y x y a
dx

+ =  . 

10. If 3 3 3 0x y axy+ − = , find 
2

2

3 3at ,
2 2

d y a a
dx

 
 
 

. 

11. If andyz xy f z
x

 =  
 

is a constant, then show that 

y dyf x y x
x dx
y dyf y y x
x dx

   ′ +      =
   −      

. 

Answers. 

1. 3 32 (8 5 )a t t+   3.  
2

2 2 2 2 2 2
3 2

2 22 2 ; 2 2x y x yy yy e xe y e x e
x x

− −+ − − +  

5. 
( ) ( ) ( ) ( )2 2 2 2 2 2 2 2

; ; ;
2 2 2 2

u v v u
u v u v u v u v

−
+ + + +

  7. 
1

1

log
log

y x

y x

yx y y
x x xy

−

−

+
+

 

8. 
( )

( )

3 3 3 6

34 3

6 2a xy x y a

y a x

+
−

−
  9. 

2
3

4 1
3 33

a

x y
  10. 32

3a
−
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1.7. Homogeneous Functions. A polynomial in x and y such that the degree of each terms is same is 
called a homogeneous function of degree n. It can be represented as  
   1 1

0 1 1( , ) ...n n n n
n nf x y a x a x y a x y a y− −
−= + + + +  

A homogeneous function of degree n can be expressed as n yx
x

φ  
 
 

. Thus,  

   

1 1
0 1 1

2

0 1 2

( , ) ...

...

n n n n
n n

n
n

n

n

f x y a x a x y a xy a y

y y yx a a a a
x x x

yx
x

φ

− −
−= + + + +

    = + + + +    
     

 =  
 

 

 For example, if 
1
2

1
( , )

1

yx
xy x yf x y x

yy x xx
x

φ
−

 
+ 

+   = = =  +    +  

. 

Therefore f(x, y) is a homogeneous function of degree 
1
2

− . 

1.7.1. Theorem. If u is a homogeneous function in x and y of degree n, then show that u
x

∂
∂

 and u
y

∂
∂

 are 

homogeneous functions of degree (n − 1) each. 

Proof. Given that u is a homogeneous function of x and y of degree n, so by definition, we can write 
n yu x f

x
 =  
 

, thus 

( ) 1
2

1 1 1

1

somefunction of

n n n n

n n n

n

u y y y y yx f x f nx f x f
x x x x x x x x

y y y yn x f x f x
x x x x

yx
x

φ

−

− − −

−

∂ ∂ ∂          ′= + = + −         ∂ ∂ ∂         
      ′= + − =            

 =  
 

 

 This shows that 
u
x
∂
∂

is a homogeneous function of degree n − 1  

Also, 

 

1

1

1

a function of

n n n

n

u y y yx f x f x f
y y x x x x

yx
x

−

−

∂ ∂       ′ ′= = =      ∂ ∂       
 =   
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Hence u
y
∂
∂

 is also a homogeneous function of degree n − 1. 

1.7.2. Euler’s Theorem. If u = f(x, y) be a homogeneous function of x and y of degree n then  

u ux y nu
x y
∂ ∂

+ =
∂ ∂

 

for all x, y belonging to the domain of the function.  

Proof. As u is a homogeneous function of degree n, Therefore, 

   n yu x
x

φ  =  
 

        (1) 

  ⇒   ( )n nu y yx x
x x x x x

φ φ∂ ∂ ∂     = +    ∂ ∂ ∂    
 

          = 1
2

n ny y ynx x
x x x

φ φ−      ′+ −     
     

 

  ⇒  1 2n nu y yn x x y
x x x

φ φ− −∂    ′= −   ∂    
     (2) 

Again   nu yx
y y x

φ∂ ∂   =   ∂ ∂   
 = 11n ny yx x

x x x
φ φ−   ′ ′=   
   

 (3) 

Multiplying (2) by x, (3) by y and adding, we get 

   1 1n n nu u y y yx y nx x y x y
x y x x x

φ φ φ− −∂ ∂      ′ ′+ = − +     ∂ ∂      
 

             = n yn x
x

φ  
 
 

 = nu  [By (1)] 

1.7.3. Remark. In general, if u is a homogeneous function of m independent variables, 

( )1 2, ,..., mu u x x x= , then 1 2
1 2

... m
m

u u ux x x nu
x x x
∂ ∂ ∂

+ + + =
∂ ∂ ∂

. 

1.7.4. Theorem. If u is a homogeneous function of x and y of degree n, then show that  
2 2

2 ( 1)u u ux y n
x x y x
∂ ∂ ∂

+ = −
∂ ∂ ∂ ∂

, 

( )
2 2

2 1u u ux y n
x y y y
∂ ∂ ∂

+ = −
∂ ∂ ∂ ∂

 

and  
2 2 2

2 2
2 22 ( 1)u u ux xy y n n u

x x y y
∂ ∂ ∂

+ + = −
∂ ∂ ∂ ∂

. 
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Proof. Since u is homogeneous function of x, y of degree n, so by Euler’s theorem, we have 

u ux y nu
x y
∂ ∂

+ =
∂ ∂

       (1) 

Differentiating (1) partially w.r.t. x, we get  

   ( )u ux y nu
x x x y x

 ∂ ∂ ∂ ∂ ∂  + =  ∂ ∂ ∂ ∂ ∂   
 

  ⇒  
2 2

2

u u u ux y n
x x x y x
∂ ∂ ∂ ∂

+ + =
∂ ∂ ∂ ∂ ∂

 

  ⇒  
2 2

2

u u u ux y n
x x y x x
∂ ∂ ∂ ∂

+ = −
∂ ∂ ∂ ∂ ∂

 

  ⇒  
2 2

2 ( 1)u u ux y n
x x y x
∂ ∂ ∂

+ = −
∂ ∂ ∂ ∂

.     (2) 

Similarly, differentiating (1) partially w.r.t. y, we have 

  
2 2

2 ( 1)u u ux y n
x y y y
∂ ∂ ∂

+ = −
∂ ∂ ∂ ∂

     (3) 

Multiplying (2) by x and (3) by y and then adding, we get  
2 2 2

2 2
2 22 ( 1) ( 1)u u u u ux xy y n x y n nu

x x y y x y
 ∂ ∂ ∂ ∂ ∂

+ + = − + = − ∂ ∂ ∂ ∂ ∂ ∂ 
 

Using Euler’s theorem, we obtain  

   
2 2 2

2 2
2 22 ( 1)u u ux xy y n n u

x x y y
∂ ∂ ∂

+ + = −
∂ ∂ ∂ ∂

 

1.7.5. Example. If 2 2u x y= + , then show that 1u ux y
x y
∂ ∂

+ =
∂ ∂

. 

Solution. Since 2 2u x y= + , so 2u x
x
∂

=
∂

 and 2u y
y
∂

=
∂

. Thus, 

     2u ux y u
x y
∂ ∂

+ =
∂ ∂

. 

1.7.6. Example. If m ny xz x f x g
x y

  = +   
   

, prove that  

2 2 2
2 2 2

2 22 ( 1)z z z z zx xy y mn m n x y
x x y y x y

 ∂ ∂ ∂ ∂ ∂
+ + + = + − + ∂ ∂ ∂ ∂ ∂ ∂ 

 

Solution. Let andm ny xu x f v x g
x y

  = =   
   

. Then z = u + v. 

Now m yu x
x

 =  
 

, so using Euler’s theorem, we have 
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2 2 2

2 2
2 22 ( 1)u u ux xy y m m u

x x y y
∂ ∂ ∂

+ + = −
∂ ∂ ∂ ∂

     (1) 

Also n xv x g
y

 
=  

 
, so  

   
2 2 2

2 2
2 22 ( 1)v v vx xy y n n v

x x y y
∂ ∂ ∂

+ + = −
∂ ∂ ∂ ∂

     (2) 

Adding (1) and (2), we have  

  
2 2 2

2 2
2 2( ) 2 ( ) ( ) ( 1) ( 1)x u v xy u v y u v m m u n n v

x x y y
∂ ∂ ∂

+ + + + + = − + −
∂ ∂ ∂ ∂

 

 

2 2 2
2 2

2 2

2 2

2 ( 1) ( 1)

( ) ( )
( ) ( ) ( ) ( )

( )( ) ( ) ( )
( 1)( ) ( )

z z zx xy y m m u n n v
x x y y

m u n v mu nv
m m n u n m n v mn u v mu nv
m n mu nv mn u v mu nv
m n mu nv mn z

∂ ∂ ∂
+ + = − + −

∂ ∂ ∂ ∂

= + − +
= + + + − + − +
= + + − + − +
= + − + −

 

Also due to Euler’s theorem,  

  andu u v vx y mu x y nv
x y x y
∂ ∂ ∂ ∂

+ = + =
∂ ∂ ∂ ∂

 

and so 

  z zx y mu nv
x y
∂ ∂

+ = +
∂ ∂

 

as z = u + v. Thus, 

 
2 2 2

2 2
2 2 ( 1)z z z z zx y m n x mnz

x x y y x y
 ∂ ∂ ∂ ∂ ∂

+ + = + − + − ∂ ∂ ∂ ∂ ∂ ∂ 
 

or  
2 2 2

2 2
2 22 ( 1)z z z z zx xy y mnz m n x

x x y y x y
 ∂ ∂ ∂ ∂ ∂

+ + + = + − + ∂ ∂ ∂ ∂ ∂ ∂ 
. 

1.7.7. Exercise. Verify Euler’s theorem for the following function: 

1. yu xy f
x

 =  
 

 

2. 5 4 2 3 4 52 3 5 3 7u x x y x y xy y= − + + −  

3. 
y
xu e=  

4. logn yu x
x

 =  
 

. 
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1.8. Local Maxima and Local Minima.  

1.8.1. Local Maxima. A function f(x) is said to have a local maxima at x = a if there exists 0δ >  such 
that  

     , for all ,f x f a x a aδ δ( ) < ( ) ∈( − + )  

Here, f a( )  is known as local maximum value of the function atf x x a( ) = . 

1.8.2. Local Minima. A function f x( )  is said to have a local minima at x = a if there exists 0δ >  such 
that  

     , for all ,f x f a x a aδ δ( ) > ( ) ∈( − + )  

Here, f a( )  is known as local minimum value of the function atf x x a( ) = . 

1.8.3. Maximum value of a function. Let f x( )  is real valued function on the interval I, then f x( )  is 
said to have the Maximum value in I, if there exists some a in I such that    
 , for allf x f a x I( ) ≤ ( ) ∈ . 

A f(x) having Maximum value at x = a, if there exists a neighbourhood of x = a such that it is an 
increasing function on left hand side of x = a and decreasing function on the right hand side of x = a.  

1.8.4. Minimum value of a function. Let f(x) is real valued function on the interval I. then f(x) is said to 
have the minimum value in I, if there exists some a in I such that  

    , for allf x f a x I( ) ≥ ( ) ∈  

A f(x) having Minimum value at x = a, if there exists a neighbourhood of x = a such that it is a 
decreasing function on left hand side of x = a and increasing function on the right hand side of x = a. 

1.8.5. Stationary Point. The values of x for which 0f x′( ) =  are called stationary points or critical 
points of f(x).  

1.8.6. Theorem. A necessary condition for f a( )  to be an extreme value of function f x( )  is that 
0f a′( ) = , if exists. 

1.8.7. First derivative test to find points of local maxima and local minima.  

First assume y f x= ( )  be a differentiable function. Then, differentiate y with respect to x and solve 
dy
dx

 

= 0 for x. If 1 2, , ..., nc c c  be the roots of this equation, then these are the possible points (known as 

stationary points) where the function can attain a local maxima or local minima. When x = ci and 
dy
dx

 

changes its sign from positive to negative as x increases through ic , then the function attains a local 

maxima at ix c=  and local maximum value at ix c=  is if c( ) . Further, if 
dy
dx

 changes its sign from 

negative to positive as x increases through ic , then the function attains a local minima at ix c=  and 
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local minimum value at ix c=  is if c( ) . If 
dy
dx

 does not change sign as x increases through ic , then 

ix c=  is neither a point of Local maximum nor a point of local minimum. In this case ix c=  is a point 
of inflexion.  

1.8.8. Higher order derivative test to find points of local maxima and local minima.  

First assume y f x= ( )  be a differentiable function. Then differentiate w.r.t. x to find f x′( ) . Solve 
0f x′( ) =   for x and let 1 2, ,..., nc c c  be the roots of this equation, then these are the possible points 

(known as stationary points) where the function can attain a local maximum or a local minimum. At 
ix c= , if 0, theni if c x c′′( ) < =  is a point of local maximum and local maximum value is if c( ) . 

Similarly, if 0, theni if c x c′′( ) > =  is a point of local minimum and local minimum value is if c( ) . 

If 0if c′′( ) =  and 0, theni if c x c′′′( ) ≠ =  is neither a point of local maxima nor a point of local minima 

and is called the point of inflexion. However, if 0if c′′′( ) = , then for 0, theniv
i if c x c( ) < =  is a point 

of local maximum and local maximum value is if c( )  and for 0, theniv
i if c x c( ) > =  is a point of local 

minimum and local minimum value is if c( ) .  

If 0iv
if c( ) = , then proceed to higher derivative as in the case 0if c′′( ) = .  

1.8.9. Absolute Maxima and Absolute Minima. If a function f(x) is continuous and differentiable on a 
closed interval [a, b], then it attains the absolute maximum and absolute minimum at the stationary 
points or at a or b. 

At the stationary points 1 2, ,..., nc c c  and a, b obtain 1 2, ,..., , ,nf c f c f c f a f b( ) ( ) ( ) ( ) ( ) . Out of these values 

the maximum and minimum values are respectively known as the absolute maximum and absolute 
minimum values of the function.  

1.8.10. Example. Find all the points of local maxima and minima of 21 2f x x x( ) = ( − ) ( + )  using first 
derivative test. Also, find local maximum and local Minimum values.  

Solution. Let 21 2y x x= ( − )( + ) . Differentiating w.r.t. x, we get  

   22 1 2 2 3 2dy x x x x x
dx

= ( − )( + ) + ( + ) = ( + )  

Considering 0dy
dx

= ,  implies 3 2 0x x( + )=  and so 0, 2x = − . 

Therefore, x = 0 and x = − 2 are the critical points.  
For x = 0, if x is slight less than 0, then  

    3 2 0dy x x
dx

= ( + ) <   

as x < 0 and x + 2 > 0. If x is slightly greater than 0, then 
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     3 2 0dy x x
dx

= ( + ) >   

as x > 0 and x + 2 > 0.  

Therefore 
dy
dx

 changes sign from negative to positive as x passes through 0. Hence x = 0 is point of local 

minima and local minimum value is 20 0 1 0 2 4f ( ) = ( − )( + ) = − . 

For x = − 2, if x is slightly less than − 2, then 

     3 2 0dy x x
dx

= ( )( + ) >  

and when x is slightly greater than − 2 

     3 2 0dy x x
dx

= ( + ) <    

Therefore, 
dy
dx

 changes sign from +ve to −ve as x passes through − 2, which implies x = −2 is the point 

of local maxima and local maximum value is 22 2 1 2 2 0f (− ) = (− − )(− + ) =  

1.8.11. Example. Determine the local maximum and local minimum values, if any, of 3 26 9 15x x x− + + . 

Solution. Consider 3 26 9 15f x x x x( ) = − + +  

Differentiating f x( )  w.r.t. x, we obtain 23 12 9f x x x′( ) = − +  and 6 12f x x′′( ) = − . 

For stationary value,  0f x′( ) =   ⇒  23 12 9 0x x− + =  ⇒  23 4 3 0x x( − + ) =  

      ⇒  1 3 0x x( − )( − ) =   ⇒  1, 3x =  

Therefore, x = 1 and x = 3 are the critical points.  

For x = 1, 1 6 1 12 6 0f ′′( ) = ( ) − = − < . Hence x = 1 is the point of local maximum and local maximum 
value is 1 19f ( ) = . 

For x = 3, 3 6 3 12 6 0f ′′( ) = ( ) − = > . Hence x = 3 is the point of local minimum and local minimum 
value is (3) 15f = . 

1.8.12. Example. Find the absolute maximum and absolute minimum values of 
2

21
2

x x − + 
 

 on the 

interval 52,
2

 −  
. 

Solution. Let 
2

31
2

f x x x ( ) = − + 
 

, then 22 1 3f x x x′( ) = − + . 
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Now 0f x′( ) =  ⇒ 23 2 1 0x x+ − =  ⇒ 
1 , 1
3

x =  

Since 1 5, 1 2,
3 2

 − ∈ −  
, therefore, 

1 and 1
3

x x= = −  are the only stationary points. So we need to find 

the value of 
1 5at 2, 1, ,
3 2

f x x( ) = − − . 

Here, 72
4

f (− ) = − , 51
4

f (− ) = , 
1 7
3 108

f   = 
 

, 
5 157
2 8

f   = 
 

. 

Hence, absolute maximum value of f x( )  is 
157 5at

8 2
x =  and absolute minimum value is 

7 at 2
4

x− = − . 

1.8.13. Remarks. 

1. Area and parameter of a rectangle of sides x and y are xy and 2 x y( + ) . 
2. Area and parameter of a square of side x are x2 and 4x. 
3. Area and circumference of a circle of radius r are 2rπ  and 2 rπ . 
4. Volume and Surface area of a cube of edge length x are x3 and 6x2. 
5. Volume and Surface area of a cuboid of edges of length x, y and z are xyz and 2 xy yz zx( + + ) . 

6. Volume and Surface area of a sphere of radius r are 34
3

rπ  and 24 rπ . 

7. Volume, Surface area and Curved Surface area of a right circular cylinder of base radius r and 
height h are 2r hπ , 22 2rh rπ π+  are 2 rhπ  respectively. 

8. Volume, Surface area and Curved Surface area of a right circular cone of height h, slant height l 

and radius of base r are 21
3

r hπ , 2rl rπ π+  and rlπ  respectively. 

1.8.14. Example. Divide 30 into two parts such that their product is maximum .  

Solution. Let one part is x. Then, second part will be 30 − x. Let the product of two parts be P. Then,  
 30P x x= ( − )  

  ⇒   230P x x= −   ⇒  30 2dP x
dx

= −  

For stationary points, we take  

0dP
dx

=   ⇒  30 2 0x− =   ⇒ 15x =  

Now, 
2

2 2 0 when 15d P x
dx

= − < = . Therefore, P is maximum when x = 15, that is, P is maximum when 

first part is 15 then second part is also 15. 



Calculus & Differentiation 23 
1.8.15. Example. Find two positive numbers with sum 35 and product of square of one and fifth power 
of second is maximum. 

Solution. Assume the numbers are x and y. Then, we have, 
    x + y = 35 
Let    P = x2y5  or  2 5 2 535P x y y y= = ( − )  

Then,   [ ]4 435 175 7 7 35 25dP y y y y y y
dy

= ( − )( ) − = ( − ) ( − )  

For stationary points, we have 

   0dP
dy

=   ⇒  47 35 25 0y y y( − ) ( − ) =  ⇒  y = 0, 25, 35 

But y = 0 and y = 35 are not possible. So y = 25. Also, 

   
2

4 3 4
2 7 25 28 35 25 7 35d P y y y y y y y

dy
= − ( − ) + ( − ) ( − ) − ( − ) . 

At 25,y =           
2

4
2 70 25 0d P

dy
= − ( ) < . 

Thus, P is maximum when y = 25 and so x = 35 − 25 = 10.   

1.8.16. Example. Show that all the rectangles with a given perimeter, the square has the largest area. 
Solution. Let x and y be the lengths of two sides of a rectangle of fixed perimeter P and let A be its area. 
Then, we have 2P x y= ( + )  and A = xy. 

Now,  2
2
PP x y y x= ( + ) ⇒ = − . Then, 2

2 2
P PA xy x x x x = = − = − 

 
, and so 

 
2

22 and 2
2

dA P d Ax
dx dx

= − = −  

For stationary point, take  0
4

dA Px
dx

= ⇒ =  

For 
4
Px = ,  

2

2 2 0d A
dx

= − < . Therefore, A is maximum when 
4
Px = . Also, we have 

4
Py = . 

Hence A is maximum when 
4
Px y= = , that is, when rectangle is a square.  

1.8.17. Exercise. Determine the local maximum and local minimum values, if any, for the following 
functions: 

(i) 3 26 9 8f x x x x( ) = − + −    (ii) 
4

, 1
1

xf x x
x

( ) = ≠
−

 

(iii) 4 3 23 2 6 6 1f x x x x x( ) = − − + +   (iv) 3 21 1f x x x( ) = ( − ) ( + )  

(v) 
1f x x
x

( ) = +     (vi) 
4

2
f x x

x
( ) = +

+
 

(vii) 43f x x( ) = ( − )   
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Answers. (i) x = 1 is a point of local maxima and local maximum value is -4, and x = 3 is a point of 
local minima and local minimum value is -8.  

(ii) x = 0 is the point of local maxima and local maximum value is 0, and 
4
3

x =  is the point of local 

minima and local minimum value is 256
27

. 

(iii) 
1
2

x =  is the point of local maxima and local maximum value is 
39
16

, and 1, 1x = −  is the point of 

local minima and local minimum value is 2, -6 respectively.  

1.8.18. Exercise. Prove that following functions do not have maxima or minima:  

  (i) ax bf x e +( ) =      (ii) log 2 5f x x( ) = ( + )  

1.8.19. Exercise. 

1. Find the absolute maximum value and the absolute minimum value of the following functions:  

  (i) [ ]2 in 2, 5f x x x( ) = − −   (ii) [ ]2 1 in 1, 10f x x x( ) = ( − ) −   

(iii) [ ]3 12 551 in 3, 1f x x x( )= − + − −  (iv) [ ]3 212 18 in 1, 10f x x x( ) = − +  

1.8.20. Exercise. 

1. Among all pairs of positive numbers with product 256, find those having minimum sum. 
2. Find two positive numbers with sum 16 and the sum of whose squares in minimum. 
3. Show that of all the rectangles of given area, the square has the smallest perimeter. 
4. Show that of all the rectangles inscribed in a given circle, the square has the maximum area. 
5. A rectangular sheet of tin 45 cm by 24 cm is to be made into a box without top, by cutting off 

squares from each corners and folding up the flaps. Find the side of the square to be cut off so 
that the volume of the box is maximum possible. 

6. Show that for a cone of given volume, curved surface area will be minimum when the height is 
2  times the radius of the base.  

7. Show that the height of the cylinder of maximum volume that can be inscribed in a sphere of 

radius ‘a’ is 2
3
a . 

8. A box with a square top and bottom is to be made to contain 500cc. Material for top and bottom 
costs Rs. 4 per sq. unit and the material for sides costs Rs. 1 per sq. cm. What is the cost of the 
least expensive box that can be made? 

9. Find two numbers whose sum is 24 and whose product is maximum.  
10. Find two numbers x and y such that x + y = 60 and xy3 is maximum. 
11. Prove that the area of a right angled triangle of given hypotenuse in maximum when the triangle 

is isosceles. 
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12. Show that a cylinder of a given volume which is open at the top, has minimum total surface area 

if its height is equal to the radius of its base. 
13. Show that the height of a cylinder, which is open at the top, having a given surface and 

maximum volume, is equal to the radius of the base. 

14. The cost C of manufacturing an article is given by the formula 2 483 5C x
x

= + +  where x is the 

number of articles manufactured. Find the minimum value of C. 
15. Find the maximum profit that a company can make, if the profit function is given by 

241 24 18P x x x( ) = − − . 

Answers. 

1. Both parts 16.  2. Both 8.  5. The side of the squares is 5 cm. 

8. Rs. 600  9. 12, 12  10. x = 15, y = 45 

16. 49 

1.8.21. Finding Maxima and Minima in cases of two variables involving not more than one 
constraint. 

If ( ),f x y  be a function of two independent variables x and y. Then ( ),f x y  is said to have maximum 

or minimum value at the point (a, b) if ( ) ( ), ,f a b f a h b k> + +  or ( ) ( ), ,f a b a h b k< + +  for small 

values of h and k, positive or negative.  

1.8.22. Remark. Maximum or minimum value of a function ( ),f x y  is called its extreme value. For an 

extreme value at ( ),a b , the difference ( ) ( ), ,f a h b k f a b+ + −  must have the same sign for all values of 

h & k  

1.823. Necessary conditions for the function ( ),f x y  to have an extreme value at ( ),a b . 

Due to Taylor’s theorem for function of two variables 

 ( ) ( ) ( ) ( ), , , ,f ff a h b k f a b h a b k a b
x y

∂ ∂
+ + − = +

∂ ∂
 

+ ( ) ( ) ( )
2 2 2

2 2
2 2

1 , 2 , , ...
2!

f f fh a b hk a b k a b
x x y y

 ∂ ∂ ∂
+ + + ∂ ∂ ∂ ∂ 

  

Now h and k are small enough, so second and higher degree terms of h and k may be neglected. Thus the 

sign of ( ) ( ), ,f a h b k f a b+ + −  will be similar to that of ( ) ( ), ,f fh a b k a b
x y

∂ ∂
+

∂ ∂
. For having an 

extreme value, ( ),f a h b k+ +  ( ),f a b−  must have the same sign for all small values of h and k, 
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positive or negative. This is possible only when ( ) ( ), 0 and , 0f fa b a b
x y

∂ ∂
= =

∂ ∂
. Thus the necessary 

conditions for ( ),f x y to have extreme value at ( ),a b  are  

   ( ) ( ), 0 ,f fa b a b
x y

∂ ∂
= =

∂ ∂
 

 

1.8.24. Stationary point. The points satisfying the condition 0 and 0f f
x y

∂ ∂
= =

∂ ∂
 are called stationary 

point of the function ( ),f x y . 

Saddle point. The stationary point of function ( ),f x y , is the point obtained from 0, 0f f
x y

∂ ∂
= =

∂ ∂
 at 

which the function has neither maximum value nor minimum value is called saddle point of ( ),f x y . 

1.8.25 Condition for a function (x, y) to have maximum or minimum at a point. 

The Taylor’s theorem for function of two variables is given by  

 ( ) ( ) ( ) ( ), , , ,f ff a h b k f a b h a b k a b
x y

∂ ∂
+ + − = +

∂ ∂
  

    ( ) ( ) ( )
2 2 2

2 2
2 2

1 , 2 , , ...
2!

f f fh a b hk a b k a b
x x y y

 ∂ ∂ ∂
+ + + + ∂ ∂ ∂ ∂ 

 

For ( ),f x y to have extreme value at (a, b), we must have ( ), 0f a b
x

∂
=

∂
 and ( ), 0f a b

y
∂

=
∂

. Using 

these  

( ) ( ) ( ) ( ) ( )
2 2 2

2 2
2 2

1, , , 2 , , ...
2!

f f ff a h b k f a b h a b h k a b k a b
x x y y

 ∂ ∂ ∂
+ + − = + + + ∂ ∂ ∂ ∂ 

 

Let us take ( ) ( ) ( )
2 2 2

2 2, , , , ,f f fA a b B a b C a b
x x y y

∂ ∂ ∂
= = =
∂ ∂ ∂ ∂

. Then  

 

( ) ( ) ( )

( ) ( )

2 2

2 2 2

2 2 2 2 2 2 2

2 2 2

1, , ...
2!

1 2 ...
2!

1 2 ...
2!

1 ...
2!

f a h b k f a b Ah hkB Ck

A h h k A B AC k
A

A h hk A B B k AC k B k
A

Ah B k AC B k
A

+ + − = + + +

 = + + + 

 = + + + − + 

 = + + − + 

 



Calculus & Differentiation 27 

Neglecting higher degree terms, the sign of ( ) ( ), ,f a h b k f a b+ + −  depends on 

( ) ( )2 2 21
2!

A h B k AC B k
A
 + + −  . In this, ( )2 2andAh B k k+  are positive for all h and k. The sign 

of ( ) ( )2 2 21
2!

A h B k AC B k
A
 + + −   depends on the signs of 2AC B−  and A . 

The following cases are to be considered: 

Case I. If ( )2 0,AC B− >  then the square bracket in the expression ( ) ( )2 2 21
2!

A h B k AC B k
A
 + + −   

is positive and the sign depends an A only. When A > 0, then the expression 

( ) ( )2 2 21
2!

A h B k AC B k
A
 + + −   is positive and hence ( ) ( ), , 0f a h b k f a b+ + − > , which implies  f 

( ),x y  has minimum value at (a, b). When A < 0, then the expression 

( ) ( )2 2 21
2!

A h B k AC B k
A
 + + −   is negative and hence ( ) ( ), , 0f a h b k f a b+ + − < , which implies 

( ),f x y  has maximum value at ( ),a b . 

Case II. If ( )2 0AC B− < , then the sign of expression ( ) ( )2 2 21
2!

A h B k AC B k
A
 + + −   depends on 

small values of h and k and can have different signs for different values of h and k. Hence ( ),f x y  has 

neither maximum nor minimum at ( ), .a b Such a point (a, b) is called saddle point. 

Case III. If 2 0AC B− = , then ( ) ( ) ( )21, ,
2!

f a h b k f a b Ah Bk
A

+ + − = + , which may vanish for 

values of (h, k) for which 0Ah B k+ = . Then sign of ( ) ( ), ,f a h b k f a b+ + −  will depend upon the 
next term of Taylor’s expansion. This is the doubtful case and requires further investigation. 

1.8.26. Conclusions. Concluding the above theorem the following procedure is used to obtain maximum 
and minimum of a function ( ),f x y  

1. Find andf f
x y

∂ ∂
∂ ∂

 and then solve the equations 0 and 0f f
x y

∂ ∂
= =

∂ ∂
. Assume the points obtained 

are ( ) ( )1 1 2 2, , , ,...x y x y . 

2. Then, find 
2 2 2

2 2, ,f f fA B C
x x y y

∂ ∂ ∂
= = =

∂ ∂ ∂ ∂
 and calculate the values of , ,A B C  at the point 

( ) ( )1 1 2 2, , , ,...x y x y . 

3. For ( ),i ix y , 

 (i) If  then  has miaximum value at   2 0 and 0,AC B A− > < ( ),f x y ( )1 1,x y
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 (ii) If  then  has minimum value at  

 (iii) If  then  has neither maximum value nor minimum value at 

  is a saddle point 

 (iv) If  then the case is doubtful and we check the sign of 

  for small values of h and k . has a maximum or 

 minima according as  is < 0 or > 0. 

1.8.27. Example. Obtain extreme values for the function 

   . 

 Solution. Let . 

Then,  and . 

Then,   implies 

 

         

Solving these, we get , that is,  

When x + y = 4, then we have x = 5, -1. Now for ,  and , . 

Thus points are  and . 

When , that is, . We have x = -7, 3. Now for  and . 

Thus points are  

Now,  ,  and . 

1. At (5, −1) ,  and so . 

Therefore, f has neither maximum nor minimum at (5, −1). 

2. At (−1, 5),  and so . 

Therefore,  f has neither maximum nor minimum at (−1, 5). 

3. At (−7, −7),  and so . 

2 0 and 0,AC B A− > > ( ),f x y ( )1 1,x y

2 0,AC B− < ( ),x y

( ) ( )1 1 1 1, and ,x y x y

2 0,AC B− =

( ) ( ), ,f a h b k f a b+ + − ( ),f x y

( ) ( ), ,f a h b k f a b+ + −

( ) ( )3 3, 63 12f x y x y x y xy= + − + +

( ) ( )3 3, 63 12f x y x y x y x y= + − + +

( )2 23 63 12 3 4 21f x y x y
x

∂
= − + = + −

∂
( )2 23 63 12 3 4 21f x y y x

x
∂

= − + = + −
∂

0 and 0f f
x y

∂ ∂
= =

∂ ∂

2 4 21 0x y+ − =

2 4 21 0y x+ − =

( )[ ]4 0x y x y− + − = 0 or 4 0x y x y− = + − =

5x = 1y = − 1x=− 5y =

( )5, 1− ( )1, 5−

0x y− = x y= 7, 7y x= − =− 3, 3y x= =

( ) ( )7, 7 and 3,3− −

2

2 6fA x
x

∂
= =
∂

2

12fB
x y
∂

= =
∂ ∂

2

6fC y
x y
∂

= =
∂ ∂

30 , 12, 6A B C= = =− 2 180 144 324 0AC B− =− − =− <

6, 12 , 30A B C= − = = 2 180 144 324 0AC B− =− − =− <

42 , 12 , 42A B C= − = = − 2 1620 0 and 0AC B A− = > <
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Thus f  has a maximum at  and maximum value is f(-7,-7) = 784. 

4. At ,  and so . 

Thus f has a minimum at (3, 3) and minimum value is f(3,3) = -216. 

1.8.28. Example. A rectangular box open from top is to have volume 3 cubic unit. Obtain the 
dimensions of the box requiring least material for its construction. 

Solution. Let  be the edges of the open box and S be its surface. Since box is open, so   
  
Also it is given that    

 or   

Therefore, we have   

Then, . 

For extreme values,  

and so    . 

Solving these, we get  
    

which implies, either , 
that is,   . 
However,  is not possible as in that case y does not exist.  

When then , and so stationary point is (4, 4). 

Now, , ,  

Then, . 

Now, at (4, 4), . 

Also,  

( )7, 7− −

( )3,3 18 , 12, 18A B C= = = 2 324 144 180 0 18 0AC B and A− = − = > = >

, ,x y z
2 2S xy yz zx= + +

32x y z =
32z
x y

=

32 322 2S xy y x
x y x y

   
= + +   

   

64 6 yx y
x y

= + +

2 2

64 64,S Sy x
x x y y

∂ ∂
= − = −

∂ ∂

0 and 0S S
y y

∂ ∂
= =

∂ ∂

2

64 0y
x

− = 2

64and 0x
y

− =

( )364 0x x− =
30 or 64 0x x= − =

0 or 4x x= =
0x =

4x = 64 4
16

y = =

2

2 3

128SA
x x

∂
= =
∂

2

1SB
x y
∂

= =
∂ ∂

2

2 3

128SC
y y

∂
= =
∂

( )2
2

3 3

128
1AC B

x y
− = −

( )2
2 128

1 4 1 3 0
64 64

AC B− = − = − = >
×

3

128 2 0
4

A = = >
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Hence S is least at (4, 4) and . 

Therefore, dimensions of the box requiring least material for its construction are 4 ft and 2ft. 

 

1.8.29. Lagrange’s method of undetermined multipliers.  

Lagrange’s method of undetermined multipliers is used to find the extreme values of a function of three 
or more variables when the variables are not independent but have some relation between them. 

Let be the given function and the relation for  is  

       (1) 

At a stationary point of  

    

Therefore,     (2) 

Differentiating (1), we get 

     (3)   

Multiplying (3) by λ and adding to (2), we get 

    

Therefore,       (4) 

       (5) 

       (6) 

Solving (1), (4), (5) and (6), we obtain some values of  for which  is maximum or 

minimum. 

1.8.30. Example. Find the minimum value of the function subject to the condition 
 

Solution. Let     (1) 

and      (2) 

Then,  fx = 2x, fy = 2y, fz = 2z, 
and  ϕx =  ϕy =  ϕz = 1, 

32 32 2
4 4

z
x y

= = =
×

( ), ,f x y z , ,x y z

( ), , 0x y zφ =

( ), , ,f x y z

0, 0, 0f f f
x y z

∂ ∂ ∂
= = =

∂ ∂ ∂

0f f fdx dy dz
x y z

∂ ∂ ∂
+ + =

∂ ∂ ∂

0dx dy dz
x y z
φ φ φ∂ ∂ ∂

+ + =
∂ ∂ ∂

0f f fdx dy dz
x x y x z z

φ φ φλ λ λ
     ∂ ∂ ∂ ∂ ∂ ∂

+ + + + + =     ∂ ∂ ∂ ∂ ∂ ∂     

0f
x x

φλ∂ ∂
+ =

∂ ∂

0f
y y

φλ∂ ∂
+ =

∂ ∂

0f
z z

φλ∂ ∂
+ =

∂ ∂

, ,x y z ( ), ,f x y z

2 2 2x y z+ +

3x y z a+ + =

( ) 2 2 2, ,f x y z x y z= + +

( ), , 3x y z x y z aφ = + + −
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For stationary points, due to Lagrange’s condition, we have  

   and  

   

   

   

Now         (3) 
Using values of  in (3), we get 

    

 or   

Therefore,    

Differentiating (3) partially w.r.t. x and y, we have 

    

    

and from (1)  

     

    

     

     

     

Thus,   and . 

Hence the given function has a minimum at the point given by (3) and minimum value is 
  

0, 0f f
x x y y

φ φλ λ∂ ∂ ∂ ∂
+ = + =

∂ ∂ ∂ ∂
0f

z z
φλ∂ ∂

+ =
∂ ∂

2 0 or x
2

x λλ −
+ = =

2 0 or =
2

y y λλ −
+ =

2 0 or z=
2

z λλ −
+ =

3x y z a+ + =
, ,x y z

3
2 2 2

aλ λ λ− − −
=

3 3 or = 2
2

a aλ λ−
= −

, ,x a y a z a= = =

1 0 0 and 0 1 0z z
x y

∂ ∂
+ + = + + =

∂ ∂

1 and 1z z
x y

∂ ∂
= − = −

∂ ∂

2 0 2 2 2f zx z x z
x x

∂ ∂
= + + = −

∂ ∂

0 2 2 2 2f zy z y z
y y

∂ ∂
= + + = −

∂ ∂
2

2 2 2 2 2 4f zA
x x

∂ ∂
= = − = + =
∂ ∂

2

2

22 2 2 4f zC
y y

∂ ∂
= = − = + =
∂ ∂

( )
2

2 2f fB y z
x y x y x

 ∂ ∂ ∂ ∂
= = = − ∂ ∂ ∂ ∂ ∂ 

2 2z
x

∂
= − =

∂

( )( )2 4 4 4 12 0AC B− = − = > 4 0A = >

2 2 2 2 2 2 23x y z a a a a+ + = + + =
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1.8.31. Exercise. 

1. Examine for maximum and minimum values of the following  

 (i)   (ii)  

  (iii)   (iv)      

 (v)   (vi)  

(vii)  

2. Show that  has minimum at (2, 2). 

3. Show that  has neither a maximum nor minimum at (0, 0). 

4. Show    

1. Verify Euler’s theorem for 
2 2

2 2

x yu
x y

=
+

. 

2. Show that the surface area of a closed cuboid with square base and given volume is minimum 
when it is a cube. 

3. Find the dimensions of a rectangular box without a top of maximum volume whose surface area 
is 108 sq.cms. 

1.10. Summary. In this chapter, we discussed about various aspects of calculus, like differentiability, 
partial derivatives, total derivatives and their applications to the maximization and minimization 
problems. 

Books Suggested. 

1. Allen, B.G.D, Basic Mathematics, Mcmillan, New Delhi. 
2. Volra, N. D., Quantitative Techniques in Management, Tata McGraw Hill, New Delhi. 
3.  Kapoor, V.K., Business Mathematics, Sultan chand and sons, Delhi. 

3 33x a x y y− + 2 2 4y x y x+ +

2 2 6 12x y x+ + + 3 3 3 12 20x y x y+ − − +

2 2 2 25 8 5x y x xy y− − − ( )xy a x y− −

( )
3 3

, , 0a bf x y xy a b
x y

= + + >

( ) ( ) ( )4 4, 2f x y y x x= − + −

( ) 2 3 3 5,f x y x y x y x= ( − ) + − +
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Integration 
Structure 

2.1. Introduction. 
2.2. Integration. 
2.3. Integration by Substitution. 
2.4. Integral of the product of two functions. 
2.5. Integration by partial fractions. 
2.6. Definite Integral and Area. 
2.7. Definite Integral as area under the curve. 
2.8. Learning Curve. 
2.9. Consumer and Producer Surplus. 
2.10. Producer Surplus 
2.11. Leontief Input-Output Model. 
2.12. Check Your Progress. 
2.13. Summary. 

2.1. Introduction. This chapter contains results related to finding the integration of a given function 
which help students in further studies of curves in various fields. 

2.1.1. Objective. The objective of these contents is to provide some important results to the reader like: 

(i) Integration. 
(ii) Definite integrals. 
(iii) Finding area. 
(iv) Leontiff Input-Output Model. 

2.1.2. Keywords. Integrate, Model, Definite Integral. 
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2.2. Integration. We will consider the inverse process of differentiation. In differentiation, we find the 
differential co-efficient of a given function while in integration if we are given the differential co-
efficient of a function, we have to find the function. That is why integration is called anti-derivative i.e. 
in differentiation if 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) we find  𝑑𝑑𝑦𝑦

𝑑𝑑𝑥𝑥
. In integration, we are given 𝑑𝑑𝑦𝑦

𝑑𝑑𝑥𝑥
 and we have to find 𝑦𝑦. This 

integration is also called indefinite integral. 

2.2.1. Definition of Integration 

Integration is the inverse process of differentiation. 

If 𝑑𝑑
𝑑𝑑𝑥𝑥

[𝜑𝜑(𝑥𝑥)] =  𝑓𝑓(𝑥𝑥) then 

 𝜑𝜑(𝑥𝑥) is called the integral or anti-derivative or primitive of 𝑓𝑓(𝑥𝑥) with respect to 𝑥𝑥. 

Symbolically, it is written as 

 ∫𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥 =  𝜑𝜑(𝑥𝑥) 

The symbol ∫ 𝑑𝑑𝑥𝑥 denotes integration w.r.t. 𝑥𝑥. Here 𝑑𝑑𝑥𝑥 conveys that 𝑥𝑥 is a variable of integration. The 
given function whose integral is to be found, is known as integrand. 

2.2.2. Example.  𝑑𝑑
𝑑𝑑𝑥𝑥

(𝑥𝑥2) =  2𝑥𝑥 

             ∴  ∫2𝑥𝑥  𝑑𝑑𝑥𝑥 = 𝑥𝑥2. 

2.2.3. Constant of integration 

We know that 𝑑𝑑
𝑑𝑑𝑥𝑥

(𝑥𝑥3) =  3𝑥𝑥2 

Therefore integral of 3𝑥𝑥2 may be 𝑥𝑥3, 𝑥𝑥3 + 1 or 𝑥𝑥3 + 𝐶𝐶 where 𝐶𝐶 is any arbitrary constant. Thus  

 ∫3𝑥𝑥2 𝑑𝑑𝑥𝑥 =  𝑥𝑥3 + 𝐶𝐶 

2.2.4.Example.  Find ∫5𝑥𝑥6 𝑑𝑑𝑥𝑥 

Solution.  ∫5𝑥𝑥6 𝑑𝑑𝑥𝑥 = 5∫𝑥𝑥6 𝑑𝑑𝑥𝑥 = 5 × 𝑥𝑥7

7
+ 𝐶𝐶 = 5

7
𝑥𝑥7 + 𝐶𝐶 

2.2.5. Standard Formulae 

1. ∫𝑥𝑥𝑛𝑛  𝑑𝑑𝑥𝑥 =  𝑥𝑥
𝑛𝑛+1

𝑛𝑛+1
+  𝐶𝐶,   𝑛𝑛 ≠ −1    � 𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠 𝑑𝑑

𝑑𝑑𝑥𝑥
�𝑥𝑥

𝑛𝑛+1

𝑛𝑛+1
� = 𝑥𝑥𝑛𝑛� 

2. ∫ 1
𝑥𝑥
𝑑𝑑𝑥𝑥 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑥𝑥 + 𝐶𝐶          �𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠 𝑑𝑑

𝑑𝑑𝑥𝑥
(𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑥𝑥) = 1

𝑥𝑥
 � 

3. ∫ 𝑠𝑠𝑥𝑥  𝑑𝑑𝑥𝑥 =  𝑠𝑠𝑥𝑥 +  𝐶𝐶,       � 𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠 𝑑𝑑
𝑑𝑑𝑥𝑥

(𝑠𝑠𝑥𝑥) = 𝑠𝑠𝑥𝑥� 

4. ∫𝑎𝑎𝑥𝑥  𝑑𝑑𝑥𝑥 =  𝑎𝑎𝑥𝑥

𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑎𝑎
+  𝐶𝐶,       � 𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠 𝑑𝑑

𝑑𝑑𝑥𝑥
� 𝑎𝑎𝑥𝑥

𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑎𝑎
� = 𝑎𝑎𝑥𝑥� 

5. ∫ 𝑠𝑠𝑎𝑎𝑥𝑥+𝑏𝑏  𝑑𝑑𝑥𝑥 =  𝑠𝑠
𝑎𝑎𝑥𝑥 +𝑏𝑏

𝑎𝑎
+  𝐶𝐶,       � 𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠 𝑑𝑑

𝑑𝑑𝑥𝑥
(𝑠𝑠𝑎𝑎𝑥𝑥+𝑏𝑏) = 𝑎𝑎𝑠𝑠𝑎𝑎𝑥𝑥+𝑏𝑏� 
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6. ∫(𝑎𝑎𝑥𝑥 + 𝑏𝑏)𝑛𝑛  𝑑𝑑𝑥𝑥 =  (𝑎𝑎𝑥𝑥+𝑏𝑏)𝑛𝑛+1

𝑎𝑎(𝑛𝑛+1)
+  𝐶𝐶,      � 𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠 𝑑𝑑

𝑑𝑑𝑥𝑥
�(𝑎𝑎𝑥𝑥+𝑏𝑏)𝑛𝑛+1

𝑎𝑎(𝑛𝑛+1)
� = (𝑎𝑎𝑥𝑥 + 𝑏𝑏)𝑛𝑛�  (𝑠𝑠𝑓𝑓 𝑛𝑛 ≠ −1)  

7. ∫ 𝑑𝑑𝑥𝑥
𝑎𝑎𝑥𝑥+𝑏𝑏

𝑑𝑑𝑥𝑥 = 1
𝑎𝑎

log|𝑎𝑎𝑥𝑥 + 𝑏𝑏| + 𝐶𝐶          �𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠 𝑑𝑑
𝑑𝑑𝑥𝑥
�log|𝑎𝑎𝑥𝑥+𝑏𝑏|

𝑎𝑎
� = 1

𝑎𝑎𝑥𝑥+𝑏𝑏
 � 

2.2.6. Theorem. The integral of the product of a constant and a function is equal to the product of a 
constant, and integral of the function i.e., ∫𝑘𝑘𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥 = 𝑘𝑘 ∫𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥, 𝑘𝑘 being a constant. 

Proof.  Let ∫𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥 = 𝜑𝜑(𝑥𝑥),   ∴  𝑑𝑑
𝑑𝑑𝑥𝑥

[𝜑𝜑(𝑥𝑥)] = 𝑓𝑓(𝑥𝑥) 

Now  𝑑𝑑
𝑑𝑑𝑥𝑥

[𝑘𝑘𝜑𝜑(𝑥𝑥)] = 𝑘𝑘. 𝑑𝑑
𝑑𝑑𝑥𝑥

[𝜑𝜑(𝑥𝑥)] 

[ Since, the derivative of the product of a constant and a function is equal to the product of the constant 
and the derivative of the function] 

   = 𝑘𝑘𝑓𝑓(𝑥𝑥)           �𝑎𝑎𝑠𝑠  𝑑𝑑
𝑑𝑑𝑥𝑥

[𝜑𝜑(𝑥𝑥)] = 𝑓𝑓(𝑥𝑥)� 

Thus, by definition 

 ∫𝑘𝑘. 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥 = 𝑘𝑘.𝜑𝜑(𝑥𝑥) = 𝑘𝑘.∫𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥. 

2.2.7. Theorem. The integral of the sum or the difference of two functions is equal to the sum or 
difference of their integrals i.e., ∫[𝑓𝑓1(𝑥𝑥) ± 𝑓𝑓2(𝑥𝑥)]𝑑𝑑𝑥𝑥 =  ∫𝑓𝑓1(𝑥𝑥)𝑑𝑑𝑥𝑥 ± ∫𝑓𝑓2(𝑥𝑥)𝑑𝑑𝑥𝑥. 

Proof. Let ∫𝑓𝑓1(𝑥𝑥)𝑑𝑑𝑥𝑥 =  𝜑𝜑1(𝑥𝑥)  and  ∫𝑓𝑓2(𝑥𝑥)𝑑𝑑𝑥𝑥 =  𝜑𝜑2(𝑥𝑥) 

Therefore,  

  𝑑𝑑
𝑑𝑑𝑥𝑥

[𝜑𝜑1(𝑥𝑥)] =  𝑓𝑓1(𝑥𝑥)  and  𝑑𝑑
𝑑𝑑𝑥𝑥

[𝜑𝜑2(𝑥𝑥)] =  𝑓𝑓2(𝑥𝑥) 

Now    𝑑𝑑
𝑑𝑑𝑥𝑥

[𝜑𝜑1(𝑥𝑥) ± 𝜑𝜑2(𝑥𝑥)] =  𝑑𝑑
𝑑𝑑𝑥𝑥

[𝜑𝜑1(𝑥𝑥)] ± 𝑑𝑑
𝑑𝑑𝑥𝑥

[𝜑𝜑2(𝑥𝑥)] =  𝑓𝑓1(𝑥𝑥)  ± 𝑓𝑓2(𝑥𝑥)  

[Since, the derivative of the sum or difference of two functions is equal to the sum or difference of their 
derivatives]. 

Therefore, by definition of the integral of a function 

 ∫[𝑓𝑓1(𝑥𝑥) ± 𝑓𝑓2(𝑥𝑥)]𝑑𝑑𝑥𝑥 = 𝜑𝜑1(𝑥𝑥) ± 𝜑𝜑2(𝑥𝑥) = ∫ 𝑓𝑓1(𝑥𝑥)𝑑𝑑𝑥𝑥 ± ∫𝑓𝑓2(𝑥𝑥)𝑑𝑑𝑥𝑥. 

Remark. We can extend this theorem to a finite number of functions and can have the following result. 

 ∫[𝑓𝑓1(𝑥𝑥) ± 𝑓𝑓2(𝑥𝑥) ± ⋯± 𝑓𝑓𝑛𝑛(𝑥𝑥)]𝑑𝑑𝑥𝑥 =  ∫𝑓𝑓1(𝑥𝑥)𝑑𝑑𝑥𝑥 ±  ∫ 𝑓𝑓2(𝑥𝑥)𝑑𝑑𝑥𝑥 ± ⋯± ∫𝑓𝑓𝑛𝑛(𝑥𝑥)𝑑𝑑𝑥𝑥 . 

2.2.8. Example. Write down the integral of 

(i)  𝑥𝑥2     (ii) 𝑥𝑥−9   (iii) 1 

(iv) √𝑥𝑥   (v) 1
𝑥𝑥2    (vi) 𝑥𝑥−2/3 

Solution.  

(i) ∫ 𝑥𝑥2𝑑𝑑𝑥𝑥 =  𝑥𝑥
2+1

2+1
+ 𝐶𝐶 =  1

3
𝑥𝑥3 + 𝐶𝐶 
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 (ii) ∫𝑥𝑥−9𝑑𝑑𝑥𝑥 =  𝑥𝑥
−9+1

−9+1
+ 𝐶𝐶 =  1

−8
𝑥𝑥−8 + 𝐶𝐶 = − 1

8𝑥𝑥8 + 𝐶𝐶 

  (iii) ∫1𝑑𝑑𝑥𝑥 =  ∫𝑥𝑥0𝑑𝑑𝑥𝑥 = 𝑥𝑥
0+1

0+1
+ 𝐶𝐶 =  𝑥𝑥 + 𝐶𝐶 

(iv) ∫ 𝑥𝑥1/2𝑑𝑑𝑥𝑥 =  𝑥𝑥
1/2+1

1/2+1
+ 𝐶𝐶 =  2

3
𝑥𝑥3/2 + 𝐶𝐶 

(v)  ∫ 1
𝑥𝑥2 𝑑𝑑𝑥𝑥 =  ∫𝑥𝑥−2𝑑𝑑𝑥𝑥 =  𝑥𝑥

−2+1

−2+1
+ 𝐶𝐶 =  − 1

𝑥𝑥
+ 𝐶𝐶 

(vi)  ∫ 𝑥𝑥−2/3𝑑𝑑𝑥𝑥 =  𝑥𝑥
−2/3+1

−2/3+1
+ 𝐶𝐶 =  3𝑥𝑥1/3 + 𝐶𝐶. 

2.2.9. Example. Find the integrals of the following 

(i)  √𝑥𝑥 − 1
√𝑥𝑥

     (ii) (1+𝑥𝑥)2

𝑥𝑥3    (iii) 𝑥𝑥4

𝑥𝑥2+1
 

(iv) 𝑥𝑥√𝑥𝑥 + 2    (v) (1 + 𝑥𝑥)√1 − 𝑥𝑥    

Solution.  

 (i) ∫√𝑥𝑥 − 1
√𝑥𝑥

 𝑑𝑑𝑥𝑥 =  ∫�𝑥𝑥1/2 − 𝑥𝑥−1/2�𝑑𝑑𝑥𝑥 

   = 𝑥𝑥3/2

3/2
− 𝑥𝑥1/2

1/2
= 2𝑥𝑥3/2

3
− 2𝑥𝑥1/2 + 𝐶𝐶 

(ii) ∫ (1+𝑥𝑥)2

𝑥𝑥3  𝑑𝑑𝑥𝑥 =  ∫ �1+2𝑥𝑥+𝑥𝑥2

𝑥𝑥3 �𝑑𝑑𝑥𝑥 =  ∫ � 1
𝑥𝑥3 + 2

𝑥𝑥2 + 1
𝑥𝑥
� 𝑑𝑑𝑥𝑥 

            =  ∫𝑥𝑥−3 𝑑𝑑𝑥𝑥 + 2 ∫ 𝑥𝑥−2 𝑑𝑑𝑥𝑥 +  ∫ 1
𝑥𝑥
𝑑𝑑𝑥𝑥 

             = 𝑥𝑥−2

−2
+ 2 𝑥𝑥−1

−1
+ 𝑙𝑙𝑙𝑙𝑙𝑙𝑥𝑥 + 𝐶𝐶 

        = − 1
2𝑥𝑥2 −

2
𝑥𝑥

+ log 𝑥𝑥 + 𝐶𝐶. 

(iii) ∫ 𝑥𝑥4

𝑥𝑥2+1
 𝑑𝑑𝑥𝑥 =  ∫ �

�𝑥𝑥4−1�+1
𝑥𝑥2+1

�𝑑𝑑𝑥𝑥 

  =  ∫ 𝑥𝑥4−1
𝑥𝑥2+1

𝑑𝑑𝑥𝑥 +  ∫ 1
𝑥𝑥2+1

𝑑𝑑𝑥𝑥 =  ∫(𝑥𝑥2 − 1) 𝑑𝑑𝑥𝑥 +  ∫ 1
𝑥𝑥2+1

𝑑𝑑𝑥𝑥 

   = 𝑥𝑥3

3
− 𝑥𝑥 + tan−1 𝑥𝑥 + 𝐶𝐶 

(iv) I = ∫𝑥𝑥√𝑥𝑥 + 2𝑑𝑑𝑥𝑥 

 = ∫[(𝑥𝑥 + 2) − 2]√𝑥𝑥 + 2 𝑑𝑑𝑥𝑥 

 = ∫(𝑥𝑥 + 2)√𝑥𝑥 + 2  𝑑𝑑𝑥𝑥 −  ∫ 2√𝑥𝑥 + 2 𝑑𝑑𝑥𝑥 

 = ∫(𝑥𝑥 + 2)3/2 𝑑𝑑𝑥𝑥 − 2∫(𝑥𝑥 + 2)1/2 𝑑𝑑𝑥𝑥 

 = (𝑥𝑥+2)5/2

5/2
− 2 (𝑥𝑥+2)3/2

3/2
+ 𝐶𝐶 
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 = 2
5

(𝑥𝑥 + 2)5/2 − 4
3

(𝑥𝑥 + 2)3/2 + 𝐶𝐶.         

(v) I = ∫(1 + 𝑥𝑥)√1 − 𝑥𝑥 𝑑𝑑𝑥𝑥 

 = ∫[2 − (1 − 𝑥𝑥)]√1 − 𝑥𝑥 𝑑𝑑𝑥𝑥 

  = 2 ∫(1 − 𝑥𝑥)1/2 𝑑𝑑𝑥𝑥 − ∫(1 − 𝑥𝑥)3/2 𝑑𝑑𝑥𝑥 

 = 2(1−𝑥𝑥)3/2

−3/2
− (1−𝑥𝑥)5/2

−5/2
+ 𝐶𝐶 

 = − 4
5

(1 − 𝑥𝑥)3/2 + 2
5

(1 − 𝑥𝑥)5/2 + 𝐶𝐶.    

2.2.10. Example. Integrate 𝑎𝑎3𝑥𝑥+3 𝑑𝑑𝑥𝑥, 𝑎𝑎 ≠  −1 

Solution. I = ∫ 𝑎𝑎3𝑥𝑥+3𝑑𝑑𝑥𝑥 =  ∫𝑎𝑎3𝑥𝑥 .𝑎𝑎3𝑑𝑑𝑥𝑥 

  = 𝑎𝑎3 ∫ 𝑎𝑎3𝑥𝑥𝑑𝑑𝑥𝑥 

 = 𝑎𝑎3 ∫ 𝑠𝑠3𝑥𝑥 log 𝑎𝑎𝑑𝑑𝑥𝑥   (Since 𝑠𝑠log 𝑓𝑓(𝑥𝑥) = 𝑓𝑓(𝑥𝑥) 

Therefore,  𝑠𝑠log 𝑎𝑎3𝑥𝑥 = 𝑎𝑎3𝑥𝑥  

Also  𝑠𝑠log  𝑎𝑎3𝑥𝑥 = 𝑠𝑠3𝑥𝑥𝑙𝑙𝑙𝑙𝑙𝑙  𝑎𝑎  

Therefore,  𝑎𝑎3𝑥𝑥 = 𝑠𝑠3𝑥𝑥𝑙𝑙𝑙𝑙𝑙𝑙  𝑎𝑎  

 = 𝑎𝑎3 ∫ 𝑠𝑠(3 log 𝑎𝑎)𝑥𝑥𝑑𝑑𝑥𝑥 

  = 𝑎𝑎3 𝑠𝑠 (3 log 𝑎𝑎)𝑥𝑥

3 log 𝑎𝑎
+ 𝐶𝐶 

  = 𝑎𝑎3 𝑠𝑠3𝑥𝑥 log 𝑎𝑎

3 log 𝑎𝑎
+ 𝐶𝐶 =  𝑎𝑎

3𝑎𝑎3𝑥𝑥

3 log 𝑎𝑎
+ 𝐶𝐶 =  𝑎𝑎

3𝑥𝑥+3

3 log 𝑎𝑎
+ 𝐶𝐶.  

2.3. Integration by Substitution. 

By substitution, many functions can be converted into smaller functions which can be integrated easily. 

When we apply method of substitution for finding the value of ∫𝑓𝑓(𝑥𝑥)  𝑑𝑑𝑥𝑥 and if 𝑥𝑥 =  𝑓𝑓(𝑡𝑡)  where 𝑡𝑡 is a 
new variable then 𝑓𝑓(𝑥𝑥) is converted into 𝐹𝐹[𝑓𝑓(𝑡𝑡)] and also 𝑑𝑑𝑦𝑦/𝑑𝑑𝑥𝑥. 

Now 𝑥𝑥 =  𝑓𝑓(𝑡𝑡) 

Therefore, 𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡

=  𝑓𝑓′(𝑡𝑡) or 𝑑𝑑𝑥𝑥 =  𝑓𝑓′(𝑡𝑡) 𝑑𝑑𝑡𝑡 . 

Two important forms of integrals : 

(i)   ∫ 𝑓𝑓 ′(𝑥𝑥)
𝑓𝑓(𝑥𝑥)

𝑑𝑑𝑥𝑥 =  𝑙𝑙𝑙𝑙𝑙𝑙|𝑓𝑓(𝑥𝑥)|  +  𝐶𝐶 

(ii) ∫[𝑓𝑓(𝑥𝑥)]𝑛𝑛  . 𝑓𝑓′(𝑥𝑥)  𝑑𝑑𝑥𝑥 = [𝑓𝑓(𝑥𝑥)]𝑛𝑛+1

𝑛𝑛+1
  𝑤𝑤ℎ𝑠𝑠𝑛𝑛 𝑛𝑛 ≠ −1 . 

2.3.1. Example. Evaluate the following : 
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 (i)  ∫ 2𝑥𝑥+9
𝑥𝑥2+9𝑥𝑥+10

𝑑𝑑𝑥𝑥    (ii) ∫ 6𝑥𝑥−8
3𝑥𝑥2−8𝑥𝑥+5

𝑑𝑑𝑥𝑥 

  (iii) ∫3𝑥𝑥2. 𝑠𝑠𝑥𝑥3𝑑𝑑𝑥𝑥     (iv) ∫ 𝑠𝑠1/𝑥𝑥2

𝑥𝑥3 𝑑𝑑𝑥𝑥 

(v)  ∫ log 𝑥𝑥
𝑥𝑥
𝑑𝑑𝑥𝑥     (vi) ∫ 1

𝑥𝑥 log e 𝑥𝑥
𝑑𝑑𝑥𝑥 

(vii)  ∫ 𝑥𝑥3

√1+𝑥𝑥3 𝑑𝑑𝑥𝑥    (viii) ∫ 1
𝑥𝑥+√𝑥𝑥

𝑑𝑑𝑥𝑥 

Solution.  

(i)  I = ∫ 2𝑥𝑥+9
𝑥𝑥2+9𝑥𝑥+10

𝑑𝑑𝑥𝑥 

 Put 𝑥𝑥2 + 9𝑥𝑥 + 10 = 𝑡𝑡 

 Therefore, 2𝑥𝑥 + 9 =  𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡

  or (2𝑥𝑥 + 9)𝑑𝑑𝑥𝑥 = 𝑑𝑑𝑡𝑡 

Therefore,  I = ∫ 𝑑𝑑𝑡𝑡
𝑡𝑡

= log|𝑡𝑡| + 𝐶𝐶 = log|𝑥𝑥2 + 9𝑥𝑥 + 10| + 𝐶𝐶 

(ii) I = ∫ 6𝑥𝑥−8
3𝑥𝑥2−8𝑥𝑥+5

𝑑𝑑𝑥𝑥 

 Put 3𝑥𝑥2 − 8𝑥𝑥 + 5 = 𝑡𝑡 

 Therefore, 6𝑥𝑥 − 8 =  𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡

  or (6𝑥𝑥 − 8)𝑑𝑑𝑥𝑥 = 𝑑𝑑𝑡𝑡 

Therefore,  I = ∫ 𝑑𝑑𝑡𝑡
𝑡𝑡

= log|𝑡𝑡| + 𝐶𝐶 = log|3𝑥𝑥2 − 8𝑥𝑥 + 5| + 𝐶𝐶. 

(iii)  I = ∫3𝑥𝑥2. 𝑠𝑠𝑥𝑥3𝑑𝑑𝑥𝑥 

 Put 𝑥𝑥3 = 𝑡𝑡 

 Therefore, 3𝑥𝑥2 =  𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡

  or 3𝑥𝑥2𝑑𝑑𝑥𝑥 = 𝑑𝑑𝑡𝑡 

Therefore,  I = ∫3𝑥𝑥2. 𝑠𝑠𝑥𝑥3𝑑𝑑𝑥𝑥 = ∫ 𝑠𝑠𝑡𝑡 𝑑𝑑𝑡𝑡 =  𝑠𝑠𝑡𝑡 + 𝐶𝐶 = 𝑠𝑠𝑥𝑥3 + 𝐶𝐶. 

(iv)  Let 1
𝑥𝑥2 = 𝑡𝑡  or 𝑥𝑥−2 = 𝑡𝑡 

Therefore, − 2
𝑥𝑥3 𝑑𝑑𝑥𝑥 = 𝑑𝑑𝑡𝑡  or   1

𝑥𝑥3 𝑑𝑑𝑥𝑥 = − 1
2
𝑑𝑑𝑡𝑡 

Thus,  ∫ 𝑠𝑠1/𝑥𝑥2

𝑥𝑥3 𝑑𝑑𝑥𝑥 =  ∫ 𝑠𝑠1/𝑥𝑥2 1
𝑥𝑥3 𝑑𝑑𝑥𝑥 =  ∫ 𝑠𝑠𝑡𝑡 �− 1

2
�𝑑𝑑𝑡𝑡 

    = − 1
2 ∫ 𝑠𝑠

𝑡𝑡 𝑑𝑑𝑡𝑡 =  − 1
2
𝑠𝑠𝑡𝑡 + 𝐶𝐶 =  − 1

2
𝑠𝑠1/𝑥𝑥2 + 𝐶𝐶. 

(v)  Let log 𝑥𝑥 = 𝑡𝑡.  So  1
𝑥𝑥
𝑑𝑑𝑥𝑥 = 𝑑𝑑𝑡𝑡 

 Therefore, 

 ∫ log 𝑥𝑥
𝑥𝑥
𝑑𝑑𝑥𝑥 =  ∫ log 𝑥𝑥 . 1

𝑥𝑥
 𝑑𝑑𝑥𝑥 =  ∫ 𝑡𝑡 𝑑𝑑𝑡𝑡 =  𝑡𝑡

2

2
+ 𝐶𝐶 =  (log 𝑥𝑥)2

2
+ 𝐶𝐶. 
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(vi)  Let loge 𝑥𝑥 = 𝑡𝑡,  so  1
𝑥𝑥
𝑑𝑑𝑥𝑥 = 𝑑𝑑𝑡𝑡 

 Therefore, 

 ∫ 1
𝑥𝑥𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑥𝑥

𝑑𝑑𝑥𝑥 =  ∫ 1
𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑥𝑥

. 1
𝑥𝑥
 𝑑𝑑𝑥𝑥 =  ∫ 1

𝑡𝑡
𝑑𝑑𝑡𝑡 =  𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑡𝑡 + 𝐶𝐶 =  𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠(𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑥𝑥) + 𝐶𝐶. 

(vii)   Let  1 + 𝑥𝑥3 = 𝑡𝑡2   or   𝑥𝑥2𝑑𝑑𝑥𝑥 =  2
3
𝑡𝑡 𝑑𝑑𝑡𝑡 

 Therefore,   ∫ 𝑥𝑥3

�(1+𝑥𝑥3)
𝑑𝑑𝑥𝑥 = ∫ 𝑥𝑥3

�(1+𝑥𝑥3)
. 𝑥𝑥2𝑑𝑑𝑥𝑥 =  ∫ 𝑡𝑡2−1

𝑡𝑡
. 2

3
𝑡𝑡 𝑑𝑑𝑡𝑡  

    = �2
3
�∫(𝑡𝑡2 − 1)𝑑𝑑𝑡𝑡 = 2

3
 �1

3
𝑡𝑡3 − 𝑡𝑡� + 𝐶𝐶 

    =  2
9

(1 + 𝑥𝑥3)3/2 −  2
3

(1 + 𝑥𝑥3)1/2 + 𝐶𝐶 

(viii)  ∫ 1
𝑥𝑥+√𝑥𝑥

𝑑𝑑𝑥𝑥 =  ∫ 1
√𝑥𝑥(√𝑥𝑥+1)

𝑑𝑑𝑥𝑥 

   Let √𝑥𝑥 = 𝑡𝑡,   so  1
2√𝑥𝑥

𝑑𝑑𝑥𝑥 = 𝑑𝑑𝑡𝑡   or   1
√𝑥𝑥
𝑑𝑑𝑥𝑥 = 2𝑑𝑑𝑡𝑡 

  Therefore,   ∫ 1
𝑥𝑥+√𝑥𝑥

𝑑𝑑𝑥𝑥 = 2∫ 7
√𝑥𝑥(√𝑥𝑥+1)

=  ∫ 1
𝑡𝑡+1

𝑑𝑑𝑥𝑥 

      = 2 log(𝑡𝑡 + 1) +  𝐶𝐶 = 2 log�√𝑥𝑥 + 1� +  𝐶𝐶.  

2.3.2. Example. Integrate the following : 

 (i)  𝑥𝑥√𝑥𝑥 + 2    (ii) 2+3𝑥𝑥
3+2𝑥𝑥

  (iii) (𝑥𝑥+1)(𝑥𝑥+log 𝑥𝑥)2

𝑥𝑥
      (iv) 1

𝑠𝑠𝑥𝑥−1 

Solution.    

(i)    I = ∫𝑥𝑥√𝑥𝑥 + 2𝑑𝑑𝑥𝑥 

 Putting  𝑥𝑥 + 2 = 𝑡𝑡  implies   𝑥𝑥 = 𝑡𝑡 − 2 

      Therefore, 𝑑𝑑𝑥𝑥 = 𝑑𝑑𝑡𝑡 

   I = ∫(𝑡𝑡 − 2)𝑡𝑡1/2 𝑑𝑑𝑡𝑡 =  ∫ 𝑡𝑡3/2 𝑑𝑑𝑡𝑡 − 2∫ 𝑡𝑡1/2 𝑑𝑑𝑡𝑡 

   = 𝑡𝑡5/2

5/2
− 2 𝑡𝑡3/2

3/2
+ 𝐶𝐶 =  2

5
𝑡𝑡5/2 −  4

3
𝑡𝑡3/2 + 𝐶𝐶  

   = 2
5

(𝑥𝑥 + 2)5/2 − 4
3

(𝑥𝑥 + 2)3/2 + 𝐶𝐶. 

(ii)  I = ∫ 2+3𝑥𝑥
3+2𝑥𝑥

 𝑑𝑑𝑥𝑥 

 Putting  3 − 2𝑥𝑥 = 𝑡𝑡  implies   𝑥𝑥 = 3−𝑡𝑡
2

 

      Therefore, 𝑑𝑑𝑡𝑡 = −2𝑑𝑑𝑥𝑥  implies 𝑑𝑑𝑥𝑥 =  −𝑑𝑑𝑡𝑡
2

 

   I = − 1
2 ∫

2+3�3−𝑡𝑡
2 �

𝑡𝑡
𝑑𝑑𝑡𝑡 =  − 1

2 ∫
2+9

2−
3
2𝑡𝑡

𝑡𝑡
𝑑𝑑𝑡𝑡
2
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   = −∫ 𝑑𝑑𝑡𝑡
𝑡𝑡
− 9

4 ∫
𝑑𝑑𝑡𝑡
𝑡𝑡

+  3
4 ∫𝑑𝑑𝑡𝑡 

   = − log|𝑡𝑡| −  9
4

log|𝑡𝑡| + 4
3
𝑡𝑡 + 𝐶𝐶 

    = − log|3 − 2𝑥𝑥| −  9
4

log|3 − 2𝑥𝑥| +  3
4

(3 − 2𝑥𝑥) + 𝐶𝐶 

   = 3
4

(3 − 2𝑥𝑥) − log|3 − 2𝑥𝑥| −  9
4

log|3 − 2𝑥𝑥| + 𝐶𝐶 

(iii)   I = ∫
(𝑥𝑥+1)(𝑥𝑥+log 𝑥𝑥)2

𝑥𝑥
𝑑𝑑𝑥𝑥 

 Put 𝑥𝑥 + log 𝑥𝑥 = 𝑡𝑡,    therefore �1 + 1
𝑥𝑥
� 𝑑𝑑𝑥𝑥 = 𝑑𝑑𝑡𝑡  or   �𝑥𝑥+1

𝑥𝑥
� 𝑑𝑑𝑥𝑥 = 𝑑𝑑𝑡𝑡 

Thus  𝐼𝐼 = ∫(𝑥𝑥 + log 𝑥𝑥)2 �𝑥𝑥+1
𝑥𝑥
� 𝑑𝑑𝑥𝑥 =  ∫ 𝑡𝑡2𝑑𝑑𝑡𝑡 =  𝑡𝑡

3

3
+ 𝐶𝐶 =  1

3 ∫(𝑥𝑥 + log 𝑥𝑥)3 + 𝐶𝐶. 

(iv)  ∫ 1
𝑠𝑠𝑥𝑥−1

𝑑𝑑𝑥𝑥 =  ∫ 𝑑𝑑𝑡𝑡
𝑡𝑡(𝑡𝑡−1)

=  ∫ � 1
𝑡𝑡−1

− 1
𝑡𝑡
� 𝑑𝑑𝑡𝑡 

  = log(𝑡𝑡 − 1) −  𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡 + 𝐶𝐶 

  = 𝑙𝑙𝑙𝑙𝑙𝑙 �𝑡𝑡−1
𝑡𝑡
� = 𝑙𝑙𝑙𝑙𝑙𝑙 �𝑠𝑠

𝑥𝑥−1
𝑠𝑠𝑥𝑥

� + 𝐶𝐶  

2.4. Integral of the product of two functions. 

If 𝑢𝑢 and 𝑣𝑣 be two functions of 𝑥𝑥, then 

 𝑑𝑑
𝑑𝑑𝑥𝑥

(𝑢𝑢𝑣𝑣) =  𝑢𝑢 𝑑𝑑𝑣𝑣
𝑑𝑑𝑥𝑥

+ 𝑣𝑣 𝑑𝑑𝑢𝑢
𝑑𝑑𝑥𝑥

 

implies  𝑢𝑢 𝑑𝑑𝑣𝑣
𝑑𝑑𝑥𝑥

= 𝑑𝑑
𝑑𝑑𝑥𝑥

(𝑢𝑢𝑣𝑣) − 𝑣𝑣 𝑑𝑑𝑢𝑢
𝑑𝑑𝑥𝑥

 

Integrating both sides w.r.t 𝑥𝑥, we get 

 ∫𝑢𝑢 𝑑𝑑𝑣𝑣
𝑑𝑑𝑥𝑥
𝑑𝑑𝑥𝑥 = 𝑢𝑢𝑣𝑣 − ∫𝑣𝑣 𝑑𝑑𝑢𝑢

𝑑𝑑𝑥𝑥
𝑑𝑑𝑥𝑥    …. (1) 

Let 𝑢𝑢 = 𝑓𝑓1(𝑥𝑥)  and 𝑑𝑑𝑣𝑣
𝑑𝑑𝑥𝑥

= 𝑓𝑓2(𝑥𝑥) 

Since   𝑑𝑑𝑣𝑣
𝑑𝑑𝑥𝑥

= 𝑓𝑓2(𝑥𝑥),   therefore  ∫𝑓𝑓2(𝑥𝑥)𝑑𝑑𝑥𝑥 = 𝑣𝑣 

Hence (1) becomes 

 ∫𝑓𝑓1(𝑥𝑥)𝑓𝑓2(𝑥𝑥)𝑑𝑑𝑥𝑥 = 𝑓𝑓1(𝑥𝑥)∫𝑓𝑓2(𝑥𝑥)𝑑𝑑𝑥𝑥 −  ∫[𝑓𝑓1
′(𝑥𝑥)∫𝑓𝑓2(𝑥𝑥)𝑑𝑑𝑥𝑥]𝑑𝑑𝑥𝑥. 

In words, this rule of integration by parts can be stated as : 

Integral of the product of two functions  

= First function . Integral of the second  

-Integral of [diff. coeff. of the first  . Integral of the second) 

Integral of the product of two functions 
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In finding integrals by this method proper choice of 1st  and 2nd  function is essential. Although there is 
no fixed law for taking 1st  and 2nd  function and their choice is possible by practice, yet following rule is 
helpful in the choice of functions 1st  and 2nd . 

(i) If the two functions are of different types take that function as Ist which comes first in the word 
ILATE. 

 Where  I, stands for Inverse circular function. 

L, stands for Logarithmic function. 

A, stands for Algebraic function. 

T, stands for Trigonometrical function. 

and  E, stands for Exponential function. 

(ii) If both the functions are trigonometrical take that function as 2nd whose integral is simpler. 

(iii) If both the functions are algebraic take that function as 1st whose d.c. is simpler. 

(iv) Unity may be taken as one of the functions. 

(v)  The formula of integration by parts can be applied more than once if necessary. 

2.4.1. Example. Evaluate ∫𝑥𝑥𝑛𝑛 log 𝑥𝑥 𝑑𝑑𝑥𝑥 

Solution.  Let  I = ∫𝑥𝑥𝑛𝑛 log 𝑥𝑥 𝑑𝑑𝑥𝑥 =  ∫(log 𝑥𝑥)𝑥𝑥𝑛𝑛 𝑑𝑑𝑥𝑥 

 So   I = (log 𝑥𝑥) 𝑥𝑥
𝑛𝑛+1

𝑛𝑛+1
−  ∫ 1

𝑥𝑥
𝑥𝑥𝑛𝑛+1

𝑛𝑛+1
𝑑𝑑𝑥𝑥 

     = 𝑥𝑥𝑛𝑛+1(log 𝑥𝑥)
𝑛𝑛+1

− 1
𝑛𝑛+1 ∫ 𝑥𝑥

𝑛𝑛 𝑑𝑑𝑥𝑥 

    = 𝑥𝑥𝑛𝑛+1(log 𝑥𝑥)
𝑛𝑛+1

− 1
𝑛𝑛+1

𝑥𝑥𝑛𝑛+1

𝑛𝑛+1
+ 𝐶𝐶 =  𝑥𝑥

𝑛𝑛+1 log 𝑥𝑥
𝑛𝑛+1

− 𝑥𝑥𝑛𝑛+1

(𝑛𝑛+1)2 + 𝐶𝐶. 

2.4.2. Example. Evaluate ∫𝑥𝑥𝑠𝑠𝑥𝑥 𝑑𝑑𝑥𝑥 

Solution.  Let  I= ∫𝑥𝑥𝑠𝑠𝑥𝑥 𝑑𝑑𝑥𝑥 

[Here 𝑥𝑥 is algebraic function and 𝑠𝑠𝑥𝑥  is exponential function and A occurs before T in ILATE, therefore, 
we take 𝑥𝑥 as 1st and 𝑠𝑠𝑥𝑥  as 2nd functions]. 

 𝐼𝐼 = ∫ 𝑥𝑥𝑠𝑠𝑥𝑥 𝑑𝑑𝑥𝑥 = 𝑥𝑥 ∫ 𝑠𝑠𝑥𝑥 𝑑𝑑𝑥𝑥 − ∫� 𝑑𝑑𝑑𝑑𝑥𝑥 (𝑥𝑥)∫ 𝑠𝑠𝑥𝑥 𝑑𝑑𝑥𝑥�𝑑𝑑𝑥𝑥 

    = 𝑥𝑥𝑠𝑠𝑥𝑥 − ∫1. 𝑠𝑠𝑥𝑥 𝑑𝑑𝑥𝑥 =  𝑥𝑥𝑠𝑠𝑥𝑥 − 𝑠𝑠𝑥𝑥 +  𝐶𝐶 =  𝑠𝑠𝑥𝑥(𝑥𝑥 − 1) + 𝐶𝐶.  

2.4.3. Example. Evaluate ∫𝑥𝑥3𝑠𝑠−𝑥𝑥 𝑑𝑑𝑥𝑥 

Solution.  Let  I= ∫𝑥𝑥3𝑠𝑠−𝑥𝑥 𝑑𝑑𝑥𝑥 =  𝑥𝑥3(−𝑠𝑠−𝑥𝑥) −  ∫3𝑥𝑥2(−𝑠𝑠−𝑥𝑥)𝑑𝑑𝑥𝑥 

    = −𝑥𝑥3𝑠𝑠−𝑥𝑥 +  3∫𝑥𝑥2𝑠𝑠−𝑥𝑥𝑑𝑑𝑥𝑥 

    = −𝑥𝑥3𝑠𝑠−𝑥𝑥 + 3[𝑥𝑥2(−𝑠𝑠−𝑥𝑥) −  ∫2𝑥𝑥(−𝑠𝑠−𝑥𝑥)𝑑𝑑𝑥𝑥] 
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    = −𝑥𝑥3𝑠𝑠−𝑥𝑥 − 3𝑥𝑥2𝑠𝑠−𝑥𝑥 + 6∫ 𝑥𝑥𝑠𝑠−𝑥𝑥𝑑𝑑𝑥𝑥 

  = −𝑥𝑥3𝑠𝑠−𝑥𝑥 − 3𝑥𝑥2𝑠𝑠−𝑥𝑥 + 6[𝑥𝑥(−𝑠𝑠−𝑥𝑥) −  ∫ 1(−𝑠𝑠−𝑥𝑥)𝑑𝑑𝑥𝑥 

  = −𝑥𝑥3𝑠𝑠−𝑥𝑥 − 3𝑥𝑥2𝑠𝑠−𝑥𝑥 − 6𝑠𝑠−𝑥𝑥 + 6𝑥𝑥𝑠𝑠−𝑥𝑥 + 𝐶𝐶 

  = −𝑠𝑠−𝑥𝑥(𝑥𝑥3 + 3𝑥𝑥2 − 6𝑥𝑥 + 6) + 𝐶𝐶 

2.4.4. Example. Integrate  𝑥𝑥3𝑠𝑠𝑥𝑥2  

Solution.   I = ∫ 𝑥𝑥3𝑠𝑠𝑥𝑥2 𝑑𝑑𝑥𝑥 

Put 𝑥𝑥2 = 𝑡𝑡,   therefore,    2𝑥𝑥𝑑𝑑𝑥𝑥 = 𝑑𝑑𝑡𝑡  or  𝑥𝑥𝑑𝑑𝑥𝑥 = 𝑑𝑑𝑡𝑡
2

 

I =  ∫𝑥𝑥3𝑠𝑠𝑥𝑥2 𝑑𝑑𝑥𝑥 =  ∫ 𝑥𝑥2𝑠𝑠𝑥𝑥2𝑥𝑥 𝑑𝑑𝑥𝑥 =  ∫ 𝑡𝑡𝑠𝑠𝑡𝑡 𝑑𝑑𝑡𝑡2 =  1
2 ∫ 𝑡𝑡𝑠𝑠

𝑡𝑡 𝑑𝑑𝑡𝑡 

  =  1
2

[𝑡𝑡𝑠𝑠𝑡𝑡 −  ∫ 1. 𝑠𝑠𝑡𝑡 𝑑𝑑𝑡𝑡]  

    = 1
2
𝑡𝑡𝑠𝑠𝑡𝑡 − 1

2
𝑠𝑠𝑡𝑡 + 𝐶𝐶 =  1

2
𝑥𝑥2𝑠𝑠𝑥𝑥2 − 1

2
𝑠𝑠𝑥𝑥2 + 𝐶𝐶. 

2.4.5. Example. Evaluate ∫𝑥𝑥2𝑠𝑠𝑎𝑎𝑥𝑥 𝑑𝑑𝑥𝑥 

Solution. Let 𝐼𝐼 = ∫ 𝑥𝑥2𝑠𝑠𝑎𝑎𝑥𝑥 𝑑𝑑𝑥𝑥 

 = 𝑥𝑥2 �𝑠𝑠
𝑎𝑎𝑥𝑥

𝑎𝑎
� − ∫ 2𝑥𝑥 𝑠𝑠𝑎𝑎𝑥𝑥

𝑎𝑎
𝑑𝑑𝑥𝑥  

    = 𝑥𝑥2𝑠𝑠𝑎𝑎𝑥𝑥

𝑎𝑎
− 2

𝑎𝑎
�𝑥𝑥 �𝑠𝑠

𝑎𝑎𝑥𝑥

𝑎𝑎
� − ∫1. 𝑠𝑠

𝑎𝑎𝑥𝑥

𝑎𝑎
𝑑𝑑𝑥𝑥� 

    = 𝑥𝑥2𝑠𝑠𝑎𝑎𝑥𝑥

𝑎𝑎
− 2

𝑎𝑎
�𝑥𝑥 𝑠𝑠𝑎𝑎𝑥𝑥

𝑎𝑎
− 1

𝑎𝑎
𝑠𝑠𝑎𝑎𝑥𝑥 � + 𝐶𝐶 

 = 𝑠𝑠𝑎𝑎𝑥𝑥 �𝑥𝑥
2

𝑎𝑎
− 2𝑥𝑥

𝑎𝑎2 + 2
𝑎𝑎2� + 𝐶𝐶. 

2.4.6. Example. Evaluate∫ log 𝑥𝑥 𝑑𝑑𝑥𝑥 

Solution. Let I= ∫ log 𝑥𝑥 𝑑𝑑𝑥𝑥 =  ∫(log 𝑥𝑥).1𝑑𝑑𝑥𝑥 

Integrating by parts, taking 𝑙𝑙𝑙𝑙𝑙𝑙 𝑥𝑥 as the 1st function 

 = log 𝑥𝑥 (𝑥𝑥) −  ∫ 1
𝑥𝑥

. 𝑥𝑥 𝑑𝑑𝑥𝑥 = 𝑥𝑥𝑙𝑙𝑙𝑙𝑙𝑙 𝑥𝑥 − ∫1 𝑑𝑑𝑥𝑥 

            = 𝑥𝑥 log 𝑥𝑥 − 𝑥𝑥 + 𝐶𝐶 = 𝑥𝑥(log 𝑥𝑥 − 1) + 𝐶𝐶. 

2.4.7. Example. Evaluate ∫(log 𝑥𝑥)2. 𝑥𝑥 𝑑𝑑𝑥𝑥 

Solution. Let  𝐼𝐼 = ∫(log 𝑥𝑥)2. 𝑥𝑥 𝑑𝑑𝑥𝑥 

  (log 𝑥𝑥)2. 𝑥𝑥
2

2
− ∫(2 log 𝑥𝑥). 1

𝑥𝑥
. 𝑥𝑥

2

2
𝑑𝑑𝑥𝑥 

 = 𝑥𝑥2

2
(log 𝑥𝑥)2 − ∫(log 𝑥𝑥). 𝑥𝑥 𝑑𝑑𝑥𝑥 
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 = 𝑥𝑥2

2
(log 𝑥𝑥)2 − �log 𝑥𝑥 𝑥𝑥2

2
− ∫ 1

𝑥𝑥
. 𝑥𝑥

2

2
𝑑𝑑𝑥𝑥� 

    = 𝑥𝑥2

2
(log 𝑥𝑥)2 − 𝑥𝑥2

2
log 𝑥𝑥 + 1

2 ∫𝑥𝑥 𝑑𝑑𝑥𝑥 

 = 𝑥𝑥2

2
�(log𝑥𝑥)2 − log 𝑥𝑥 +  1

2
� + 𝐶𝐶 

2.4.8. Example. Evaluate ∫ 𝑠𝑠𝑥𝑥(1 + 𝑥𝑥) log(𝑥𝑥𝑠𝑠𝑥𝑥)𝑑𝑑𝑥𝑥 

Solution.  Let I= ∫ 𝑠𝑠𝑥𝑥(1 + 𝑥𝑥) log(𝑥𝑥𝑠𝑠𝑥𝑥)𝑑𝑑𝑥𝑥 

Put  𝑥𝑥𝑠𝑠𝑥𝑥 = 𝑡𝑡,   therefore,   𝑠𝑠𝑥𝑥(1 + 𝑥𝑥)𝑑𝑑𝑥𝑥 = 𝑑𝑑𝑡𝑡 

Therefore,  𝐼𝐼 = ∫(log 𝑡𝑡). 1 𝑑𝑑𝑡𝑡 

           = log 𝑡𝑡. (𝑡𝑡) −  ∫ 1
𝑡𝑡

. 𝑡𝑡 𝑑𝑑𝑡𝑡 

          = 𝑡𝑡 log 𝑡𝑡 −  ∫ 1.𝑑𝑑𝑡𝑡 = 𝑡𝑡 log 𝑡𝑡 − 𝑡𝑡 + 𝐶𝐶 

           = 𝑡𝑡(log 𝑡𝑡 − 1) +  𝐶𝐶 = ( 𝑥𝑥𝑠𝑠𝑥𝑥)[log(𝑥𝑥𝑠𝑠𝑥𝑥) − log 𝑠𝑠] + 𝐶𝐶 

         = (𝑥𝑥𝑠𝑠𝑥𝑥) log �𝑥𝑥𝑠𝑠
𝑥𝑥

𝑠𝑠
� + 𝐶𝐶 

2.4.9. Example. Evaluate ∫ log 𝑥𝑥
(𝑥𝑥+1)2 𝑑𝑑𝑥𝑥 

Solution. Let  I= ∫ log 𝑥𝑥 . 1
(𝑥𝑥+1)2 𝑑𝑑𝑥𝑥 

Now integrating by parts, taking 𝑙𝑙𝑙𝑙𝑙𝑙 𝑥𝑥 as first function 

 I = log 𝑥𝑥 . −1
1+𝑥𝑥

− ∫ 1
𝑥𝑥

. −1
1+𝑥𝑥

𝑑𝑑𝑥𝑥 = − log 𝑥𝑥
1+𝑥𝑥

𝑑𝑑𝑥𝑥 =  − log 𝑥𝑥
1+𝑥𝑥

+ ∫ 1
𝑥𝑥(1+𝑥𝑥)

𝑑𝑑𝑥𝑥 

    = − log 𝑥𝑥
1+𝑥𝑥

+ ∫ �1
𝑥𝑥

+ 1
1+𝑥𝑥

� 𝑑𝑑𝑥𝑥 

  = − log 𝑥𝑥
1+𝑥𝑥

+ log|𝑥𝑥| − log |1 + 𝑥𝑥| + 𝐶𝐶 

    = − log 𝑥𝑥
1+𝑥𝑥

+ log � 𝑥𝑥
1+𝑥𝑥

� + 𝐶𝐶. 

2.5. Integration by partial fractions. 

2.5.1. Rational Function. An expression of the form 𝑓𝑓(𝑥𝑥)
𝜑𝜑(𝑥𝑥)

 where 𝑓𝑓(𝑥𝑥) and 𝜑𝜑(𝑥𝑥) are rational integral 

algebraic functions or polynomials. 

  𝑓𝑓(𝑥𝑥) = 𝑎𝑎0𝑥𝑥𝑚𝑚 + 𝑎𝑎1𝑥𝑥𝑚𝑚−1 + ⋯+ 𝑎𝑎𝑚𝑚−1𝑥𝑥 + 𝑎𝑎𝑚𝑚  

 𝜑𝜑(𝑥𝑥) =  𝑏𝑏0𝑥𝑥𝑛𝑛 + 𝑏𝑏1𝑥𝑥𝑛𝑛−1 + ⋯+ 𝑏𝑏𝑛𝑛−1𝑥𝑥 + 𝑏𝑏𝑛𝑛 .  

Where 𝑚𝑚,𝑛𝑛 are positive integers and 𝑎𝑎0,𝑎𝑎1,𝑎𝑎2, … ,𝑎𝑎𝑚𝑚 , 𝑏𝑏0, 𝑏𝑏1, 𝑏𝑏2, … , 𝑏𝑏𝑛𝑛  are constants is called a rational 
function or rational fraction. It is assumed that 𝑓𝑓(𝑥𝑥) and 𝜑𝜑(𝑥𝑥) have no common factor. 

e.g.  𝑥𝑥+1
𝑥𝑥3+𝑥𝑥2−6𝑥𝑥

, 𝑥𝑥−1
(𝑥𝑥+1)(𝑥𝑥2+1)

  are rational functions. 
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Such fractions can always be integrated by splitting the given fraction into partial fractions. 

Note on Partial Fractions 

1. Proper rational algebraic fraction. A proper rational algebraic fraction is a rational algebraic  
fraction in which the degree of the numerator is less than that of the denominator. 

2. The degree of the numerator 𝑓𝑓(𝑥𝑥) must be less than the degree of denominator 𝜑𝜑(𝑥𝑥) and if the degree 
of the numerator of a rational algebraic fraction is equal to or greater than, that of the  denominator, 
we can divide the numerator by the denominator until the degree of the remainder is less than that of 
the denominator. 

Then 

Given fraction = a polynomial + a proper rational algebraic fraction. 

For example, consider a rational algebraic fraction. 

 𝑥𝑥2

(𝑥𝑥−1)(𝑥𝑥−2)
= 𝑥𝑥2

𝑥𝑥2−3𝑥𝑥+2
 

Hence the degree of the numerator is 3 and the degree of the denominator is 2. We divide numerator by 
denominator. 

Therefore,  𝑥𝑥2

(𝑥𝑥−1)(𝑥𝑥−2)
= 𝑥𝑥 + 3 + 7𝑥𝑥−6

(𝑥𝑥−1)(𝑥𝑥−2)
 

Working rule. 

 (i) The degree of the numerator (𝑥𝑥) must be less than the degree of denominator 𝜑𝜑(𝑥𝑥) and if not so, 
then divide 𝑓𝑓(𝑥𝑥) by 𝜑𝜑(𝑥𝑥) till the remainder of a lower degree than 𝜑𝜑(𝑥𝑥). 

(ii)  Now break the denominator 𝜑𝜑(𝑥𝑥) into linear and quadratic factors. 

(iii) (a) Corresponding to non-repeated linear factor of (𝑥𝑥 − 𝑎𝑎) type in the denominator 𝜑𝜑(𝑥𝑥).. Put a 
partial fraction of the form 𝐴𝐴

𝑥𝑥−𝛼𝛼
. 

 Therefore,  the partial fraction of 𝑥𝑥2

(𝑥𝑥+2)(𝑥𝑥−4)(𝑥𝑥−5)
 are of the form 𝐴𝐴

𝑥𝑥+2
+ 𝐵𝐵

𝑥𝑥−4
+ 𝐶𝐶

𝑥𝑥−5
 

(b) Corresponding to non-repeated quadratic factor (𝑎𝑎𝑥𝑥2  +  𝑏𝑏𝑥𝑥 +  𝑠𝑠) of 𝜑𝜑(𝑥𝑥), partial fraction will 
be of the form 𝐴𝐴𝑥𝑥+𝑏𝑏

𝑎𝑎𝑥𝑥2 + 𝑏𝑏𝑥𝑥  + 𝑠𝑠
 

For example, the partial fraction of 

  2𝑥𝑥−3
(𝑥𝑥−1)(𝑥𝑥−4)2(𝑥𝑥2−5𝑥𝑥+10)

= 𝐴𝐴
(𝑥𝑥−1)

+ 𝐵𝐵
𝑥𝑥−4

+ 𝐶𝐶
(𝑥𝑥−4)2 + 𝐷𝐷

𝑥𝑥2−5𝑥𝑥+10
 

(c)  Corresponding to a repeated quadratic factor of the form (𝑎𝑎𝑥𝑥2 + 𝑏𝑏 + 𝑠𝑠)𝑚𝑚  in 𝜑𝜑(𝑥𝑥), there 

corresponds m partial fractions of the form 

 𝐴𝐴1𝑥𝑥+𝐵𝐵1
(𝑎𝑎𝑥𝑥2+𝑏𝑏𝑥𝑥+𝑠𝑠)

+ 𝐴𝐴2𝑥𝑥+𝐵𝐵2
(𝑎𝑎𝑥𝑥2+𝑏𝑏𝑥𝑥+𝑠𝑠)2 + ⋯+ 𝐴𝐴𝑚𝑚 𝑥𝑥+𝐵𝐵𝑚𝑚

(𝑎𝑎𝑥𝑥2+𝑏𝑏𝑥𝑥+𝑠𝑠)𝑚𝑚
 

Therefore the partial fractions of 
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 3𝑥𝑥−5
(𝑥𝑥+5)(𝑥𝑥2+7𝑥𝑥+8)2 = 𝐴𝐴

𝑥𝑥+5
+ 𝐵𝐵𝑥𝑥+𝐶𝐶

𝑥𝑥2+7𝑥𝑥+8
+ 𝐷𝐷𝑥𝑥+𝐸𝐸

(𝑥𝑥2+7𝑥𝑥+8)2 

Thus we see that when we resolve the denominator 𝜑𝜑(𝑥𝑥) into real factors, they can be of four 

types : 

(a) Linear non-repeated. 

(b) Linear repeated. 

(c) Quadratic non-repeated. 

(d) Quadratic repeated. 

The proper fraction 𝑓𝑓(𝑥𝑥)
𝜑𝜑(𝑥𝑥)

 is equal to the sum of partial fractions as suggested above. After this, multiply 

both sides by 𝜑𝜑(𝑥𝑥). The relation, we get will be an identity. So the values of the constants of R.H.S. will 
be obtained by equating the coefficients of like powers of 𝑥𝑥, and then 

solving the equation so obtained. Sometimes we can get the values of constants by some short 

cut methods i.e., by giving certain values to 𝑥𝑥 etc. 

2.5.2. Example. Evaluate the following 

 (i) ∫ 3𝑥𝑥+2
(𝑥𝑥−2)(2𝑥𝑥+3)

𝑑𝑑𝑥𝑥     (ii) ∫ 3𝑥𝑥−1
(2𝑥𝑥+1)(3𝑥𝑥+2)(6𝑥𝑥−1)

𝑑𝑑𝑥𝑥   

Solution. (i) Let 3𝑥𝑥+2
(𝑥𝑥−2)(2𝑥𝑥+3)

=  𝐴𝐴
𝑥𝑥−2

+ 𝐵𝐵
2𝑥𝑥+3

 

Multiplying both sides by (𝑥𝑥 − 2) (2𝑥𝑥 + 3) 

    3𝑥𝑥 + 2 =  𝐴𝐴(2𝑥𝑥 + 3)  +  𝐵𝐵(𝑥𝑥 − 2) 

Put 𝑥𝑥 = − 3
2
,   we have  𝐵𝐵 = 5

7
 

 Put 𝑥𝑥 = 2,   we have  𝐵𝐵 = 8
7
 

Therefore,  3𝑥𝑥+2
(𝑥𝑥−2)(2𝑥𝑥+3)

=  8
7(𝑥𝑥−2)

+ 5
7(2𝑥𝑥+3)

 

Thus,   ∫ 3𝑥𝑥+2
(𝑥𝑥−2)(2𝑥𝑥+3)

𝑑𝑑𝑥𝑥 =  ∫ 8
7(𝑥𝑥−2)

𝑑𝑑𝑥𝑥 + ∫ 5
7(2𝑥𝑥+3)

𝑑𝑑𝑥𝑥 

                                      = 8
7

log|𝑥𝑥 − 2| + 5
7

log |2𝑥𝑥 + 3| + 𝐶𝐶 

(ii)  Let  3𝑥𝑥−1
(2𝑥𝑥+1)(3𝑥𝑥+2)(6𝑥𝑥−1) = 𝐴𝐴

2𝑥𝑥+1
+ 𝐵𝐵

3𝑥𝑥+2
+ 𝐶𝐶

6𝑥𝑥−5
 

Multiplying both sides 𝑏𝑏𝑦𝑦 (2𝑥𝑥 + 1) (3𝑥𝑥 + 2) (6𝑥𝑥 − 5) 

  (3𝑥𝑥 − 1)  =  𝐴𝐴(3𝑥𝑥 + 2)(6𝑥𝑥 − 5) + 𝐵𝐵(2𝑥𝑥 + 1)(6𝑥𝑥 − 5)  +  𝐶𝐶(2𝑥𝑥 + 1)(3𝑥𝑥 + 2) 

Put 𝑥𝑥 = − 1
2
,    we have  𝐴𝐴 = 5

8
 

 Put 𝑥𝑥 = − 2
3
,   we have  𝐵𝐵 = −5 



46 Business Mathematics–I 

 Put 𝑥𝑥 = 5
6
,   we have  𝐶𝐶 = 1

8
 

Therefore,  3𝑥𝑥−1
(2𝑥𝑥+1)(3𝑥𝑥+2)(6𝑥𝑥−1) = 5

8(2𝑥𝑥+1)
− 1

3𝑥𝑥+2
+ 1

8(6𝑥𝑥−5)
 

Thus,   ∫ 3𝑥𝑥−1
(2𝑥𝑥+1)(3𝑥𝑥+2)(6𝑥𝑥−1)𝑑𝑑𝑥𝑥 = ∫ 5

8(2𝑥𝑥+1)
𝑑𝑑𝑥𝑥 − ∫ 1

3𝑥𝑥+2
𝑑𝑑𝑥𝑥 + ∫ 1

8(6𝑥𝑥−5)
𝑑𝑑𝑥𝑥 

                                      = 5
16

log|2𝑥𝑥 + 1| − 1
3

log |3𝑥𝑥 + 2| + 1
48

log |6𝑥𝑥 − 5| + 𝐶𝐶 

2.5.3. Example. Evaluate 

 (i)  ∫ 17𝑥𝑥−2
4𝑥𝑥2+7𝑥𝑥−2

𝑑𝑑𝑥𝑥   (ii) ∫ 𝑑𝑑𝑥𝑥
𝑥𝑥−𝑥𝑥3 

Solution. (i)  17𝑥𝑥−2
4𝑥𝑥2+7𝑥𝑥−2

=  17𝑥𝑥−2
(𝑥𝑥+2)(4𝑥𝑥−1) = 𝐴𝐴

𝑥𝑥+2
+ 𝐵𝐵

4𝑥𝑥−1
 

 17𝑥𝑥 − 2 =  𝐴𝐴(4𝑥𝑥 − 1) +  𝐵𝐵(𝑥𝑥 + 2) 

Put 𝑥𝑥 = 1
4
,    we have  𝐵𝐵 = 1 

 Put 𝑥𝑥 = −2,   we have  𝐴𝐴 = 4 

Therefore,  17𝑥𝑥−2
4𝑥𝑥2+7𝑥𝑥−2

=  4
𝑥𝑥+2

+ 1
4𝑥𝑥−1

 

Thus,   ∫ 17𝑥𝑥−2
4𝑥𝑥2+7𝑥𝑥−2

𝑑𝑑𝑥𝑥 = ∫ 4
𝑥𝑥+2

𝑑𝑑𝑥𝑥 + ∫ 1
4𝑥𝑥−1

𝑑𝑑𝑥𝑥 

                                    = 4 log|𝑥𝑥 + 2| + 1
4

log |4𝑥𝑥 − 1| + 𝐶𝐶. 

(ii)  ∫ 𝑑𝑑𝑥𝑥
𝑥𝑥−𝑥𝑥3 = ∫ 𝑑𝑑𝑥𝑥

𝑥𝑥(1−𝑥𝑥2)
=  ∫ 𝑑𝑑𝑥𝑥

𝑥𝑥(1−𝑥𝑥)(𝑥𝑥+𝑥𝑥)
  

 Let  1
𝑥𝑥(1−𝑥𝑥)(1+𝑥𝑥) = 𝐴𝐴

𝑥𝑥
+ 𝐵𝐵

1−𝑥𝑥
+ 𝐶𝐶

1+𝑥𝑥
 

Multiplying both sides by 𝑥𝑥(1 − 𝑥𝑥)(1 + 𝑥𝑥), we get 

   1 =  𝐴𝐴(1 − 𝑥𝑥)(1 + 𝑥𝑥) + 𝐵𝐵𝑥𝑥(1 + 𝑥𝑥) + 𝐶𝐶𝑥𝑥(1 − 𝑥𝑥) 

Putting 𝑥𝑥 =  0 , 1 and −1, we get 𝐴𝐴 = 1, 𝐵𝐵 = 1
2

,   𝐶𝐶 = − 1
2
 

Putting these values of 𝐴𝐴,𝐵𝐵 and 𝐶𝐶, we get 

 1
𝑥𝑥(1−𝑥𝑥)(1+𝑥𝑥) = 1

𝑥𝑥
+ 1

2(1−𝑥𝑥)
− 1

2(1+𝑥𝑥)
 

Then,    

 ∫ 𝑑𝑑𝑥𝑥
𝑥𝑥−𝑥𝑥2 = ∫ �1

𝑥𝑥
+ 1

2(1−𝑥𝑥)
− 1

2(1+𝑥𝑥)
� 𝑑𝑑𝑥𝑥 

    = log|𝑥𝑥| − 1
2

log |1 − 𝑥𝑥| −  1
2

log |1 + 𝑥𝑥| +  𝐶𝐶  

   = 1
2

[2 log|𝑥𝑥| − log|1 − 𝑥𝑥| − log|1 + 𝑥𝑥|] + 𝐶𝐶 
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  = 1
2

log � 𝑥𝑥2

1−𝑥𝑥2�+ 𝐶𝐶 

2.5.4. Example. Evaluate  (i)  ∫ 𝑑𝑑𝑥𝑥
1+3𝑠𝑠𝑥𝑥+2𝑠𝑠2𝑥𝑥    (ii) ∫ 𝑑𝑑𝑥𝑥

6(log 𝑥𝑥)2+7 log 𝑥𝑥+2
 

Solution. (i)  Put 𝑠𝑠𝑥𝑥 = 𝑡𝑡,   therefore 𝑠𝑠𝑥𝑥𝑑𝑑𝑥𝑥 = 𝑑𝑑𝑡𝑡 

    𝐼𝐼 = ∫ 𝑑𝑑𝑡𝑡
𝑠𝑠𝑥𝑥 (1+3𝑡𝑡+2𝑡𝑡2)

=  ∫ 𝑑𝑑𝑡𝑡
𝑡𝑡(2𝑡𝑡+1)(𝑡𝑡+1)

 

Now   1
𝑡𝑡(2𝑡𝑡+1)(𝑡𝑡+1)

=  1
𝑡𝑡

+ 1
1+𝑡𝑡

− 4
2𝑡𝑡+1

 

   𝐼𝐼 =  ∫ 1
𝑡𝑡
𝑑𝑑𝑡𝑡 + ∫ 1

1+𝑡𝑡
𝑑𝑑𝑡𝑡 − ∫ 4

2𝑡𝑡+1
𝑑𝑑𝑡𝑡 

      = log |𝑡𝑡| + log|1 + 𝑡𝑡| − 2 log |2𝑡𝑡 + 1| +  𝐶𝐶 

     = log|𝑠𝑠𝑥𝑥 | + log |𝑠𝑠𝑥𝑥 + 1| − 2 log |2𝑠𝑠𝑥𝑥 + 1| + 𝐶𝐶 

    = 𝑥𝑥 + + log |𝑠𝑠𝑥𝑥 + 1| − 2 log |2𝑠𝑠𝑥𝑥 + 1| + 𝐶𝐶 

(ii)   ∫ 𝑑𝑑𝑥𝑥
6(log 𝑥𝑥)2+7 log 𝑥𝑥+2

 

Put log 𝑥𝑥 = 𝑡𝑡,   then 1
𝑥𝑥
𝑑𝑑𝑥𝑥 = 𝑑𝑑𝑡𝑡 

 𝐼𝐼 = ∫ 𝑑𝑑𝑡𝑡
6𝑡𝑡2+7𝑡𝑡+2

=  ∫ 𝑑𝑑𝑡𝑡
(2𝑡𝑡+1)(3𝑡𝑡+2)

= 2∫ 𝑑𝑑𝑡𝑡
2𝑡𝑡+1

− 3 ∫ 𝑑𝑑𝑡𝑡
3𝑡𝑡+2

 

  = log |2𝑡𝑡 + 1| − 3
2

log |3𝑡𝑡 + 2| + 𝐶𝐶 

 = log �2𝑡𝑡+1
3𝑡𝑡+2

� + 𝐶𝐶 = log �2 log 𝑥𝑥+1
3 log 𝑥𝑥+2

� + 𝐶𝐶 

2.6. Definite Integral and Area. 

Sometimes, in geometry and other branches of integral calculus, it becomes necessary to find the 
differences in two values (say 𝑎𝑎 and 𝑏𝑏) of a variable 𝑥𝑥 for integral values of function 𝑓𝑓(𝑥𝑥). This 
difference is called definite integral of 𝑓𝑓(𝑥𝑥) within limits 𝑎𝑎 and 𝑏𝑏 or 𝑏𝑏 and 𝑎𝑎. 

This definite integral is shown as follows : 

   ∫ 𝑓𝑓(𝑥𝑥)𝑏𝑏
𝑎𝑎 𝑑𝑑𝑥𝑥 

and is read as integration of 𝑓𝑓(𝑥𝑥) between limits 𝑎𝑎 and 𝑏𝑏. As we know that if ∫𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥 =  𝐹𝐹(𝑥𝑥) 

So  ∫ 𝑓𝑓(𝑥𝑥)𝑏𝑏
𝑎𝑎 𝑑𝑑𝑥𝑥 = [𝐹𝐹(𝑥𝑥)]𝑎𝑎𝑏𝑏 = 𝐹𝐹(𝑏𝑏) − 𝐹𝐹(𝑎𝑎), 

where 𝑎𝑎 and 𝑏𝑏 are called lower and upper limits. 

General Properties of Definite Integral 

Property 1. ∫ 𝑓𝑓(𝑥𝑥)𝑏𝑏
𝑎𝑎 𝑑𝑑𝑥𝑥 =  ∫ 𝑓𝑓(𝑡𝑡)𝑏𝑏

𝑎𝑎 𝑑𝑑𝑡𝑡 

Property 2.  ∫ 𝑓𝑓(𝑥𝑥)𝑏𝑏
𝑎𝑎 𝑑𝑑𝑥𝑥 =  −∫ 𝑓𝑓(𝑥𝑥)𝑎𝑎

𝑏𝑏 𝑑𝑑𝑥𝑥 
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Property 3.  ∫ 𝑓𝑓(𝑥𝑥)𝑏𝑏
𝑎𝑎 𝑑𝑑𝑥𝑥 =  ∫ 𝑓𝑓(𝑥𝑥)𝑠𝑠

𝑎𝑎 𝑑𝑑𝑥𝑥 + ∫ 𝑓𝑓(𝑥𝑥)𝑏𝑏
𝑠𝑠 𝑑𝑑𝑥𝑥 where 𝑎𝑎 < 𝑠𝑠 < 𝑏𝑏 

Property 4.  ∫ 𝑓𝑓(𝑥𝑥)𝑎𝑎
0 𝑑𝑑𝑥𝑥 =  ∫ 𝑓𝑓(𝑎𝑎 − 𝑥𝑥)𝑏𝑏

0 𝑑𝑑𝑥𝑥 

Property 5.  ∫ 𝑓𝑓(𝑥𝑥)𝑎𝑎
−𝑎𝑎 𝑑𝑑𝑥𝑥 = 0  if 𝑓𝑓(𝑥𝑥) is an odd function of 𝑥𝑥 

    = 2 ∫ 𝑓𝑓(𝑥𝑥)𝑎𝑎
0 𝑑𝑑𝑥𝑥   if 𝑓𝑓(𝑥𝑥) is an even function of 𝑥𝑥 

Note.   (i) 𝑓𝑓(𝑥𝑥) is called odd function if 𝑓𝑓(−𝑥𝑥)  =  −𝑓𝑓(𝑥𝑥) 

 (ii) 𝑓𝑓(𝑥𝑥) is called even function if 𝑓𝑓(−𝑥𝑥)  =  𝑓𝑓(𝑥𝑥) 

Property 6.  ∫ 𝑓𝑓(𝑥𝑥)2𝑎𝑎
0 𝑑𝑑𝑥𝑥 =  ∫ 𝑓𝑓(𝑥𝑥)𝑎𝑎

0 𝑑𝑑𝑥𝑥 +  ∫ 𝑓𝑓(2𝑎𝑎 − 𝑥𝑥)𝑎𝑎
0 𝑑𝑑𝑥𝑥 

2.6.1. Example. Find the values of 

(i) ∫ 𝑥𝑥21
0 𝑑𝑑𝑥𝑥    (ii)  ∫ (3𝑥𝑥 − 1)(2𝑥𝑥 + 1)2

−1 𝑑𝑑𝑥𝑥   (iii)  ∫ 𝑑𝑑𝑥𝑥
𝑥𝑥2−1

3
2  

(iv)  ∫ 𝑠𝑠𝑥𝑥−𝑠𝑠−𝑥𝑥

5
2

0 𝑑𝑑𝑥𝑥 (v)  ∫ 𝑑𝑑𝑥𝑥
√𝑥𝑥+1+√𝑥𝑥

1
0    (vi) ∫ 𝑑𝑑𝑥𝑥

[(𝑎𝑎𝑥𝑥+𝑏𝑏)(1−𝑥𝑥)]2
1

0  

Solution. (i)  ∫ 𝑥𝑥21
0 𝑑𝑑𝑥𝑥 =  �𝑥𝑥

3

3
�

0

1
=  1

3
  

(ii)   ∫ (3𝑥𝑥 − 1)(2𝑥𝑥 + 1)2
−1 𝑑𝑑𝑥𝑥 =  ∫ (6𝑥𝑥2 + 𝑥𝑥 − 1)2

−1 𝑑𝑑𝑥𝑥 

 = 6 �𝑥𝑥
3

3
�
−1

2
+ �𝑥𝑥

2

2
�
−1

2
+ [𝑥𝑥]−1

2 =  16 1
2
 

(iii)  ∫ 𝑑𝑑𝑥𝑥
𝑥𝑥2−1

3
2 =  ∫ 𝑑𝑑𝑥𝑥

𝑥𝑥2−12
3

2  

           = �1
2

log �𝑥𝑥−1
𝑥𝑥+1

��
2

3
=  1

2
�log 2

4
− log 1

3
�  =  1

2
log 3

2
 

(iv)  ∫ 𝑠𝑠𝑥𝑥−𝑠𝑠−𝑥𝑥

5
2

0 𝑑𝑑𝑥𝑥 =  1
5 ∫ 𝑠𝑠𝑥𝑥 − 𝑠𝑠−𝑥𝑥2

0 𝑑𝑑𝑥𝑥  

     = 1
5

[𝑠𝑠𝑥𝑥 + 𝑠𝑠−𝑥𝑥]0
2 =  1

5
�𝑠𝑠 − 1

𝑠𝑠
�

2
 

(v) ∫ 𝑑𝑑𝑥𝑥
√𝑥𝑥+1+√𝑥𝑥

1
0 =  ∫ √𝑥𝑥+1−√𝑥𝑥

�√𝑥𝑥+1+√𝑥𝑥�(√𝑥𝑥+1−√𝑥𝑥)
1

0 𝑑𝑑𝑥𝑥 =  ∫ (√𝑥𝑥 + 1 − √𝑥𝑥)1
0 𝑑𝑑𝑥𝑥  

    = 2
3
�(𝑥𝑥 + 1)3/2 − 𝑥𝑥3/2�

0
1

=  4
3

(√2 − 1).  

(vi) ∫ 𝑑𝑑𝑥𝑥
[𝑎𝑎𝑥𝑥+𝑏𝑏(1−𝑥𝑥)]2

1
0 =  ∫ 𝑑𝑑𝑥𝑥

[(𝑎𝑎−𝑏𝑏)𝑥𝑥+𝑏𝑏]2
1

0 =  ∫ [(𝑎𝑎 − 𝑏𝑏)𝑥𝑥 + 𝑏𝑏]−21
0 𝑑𝑑𝑥𝑥 

       = �[(𝑎𝑎−𝑏𝑏)𝑥𝑥+𝑏𝑏]−1

𝑏𝑏−𝑎𝑎
�

0

1
=  1

𝑏𝑏−𝑎𝑎
�1
𝑎𝑎
− 1

𝑏𝑏
� =  1

𝑎𝑎𝑏𝑏
 

2.6.2. Example. If ∫ 3𝑥𝑥2𝑎𝑎
0 𝑑𝑑𝑥𝑥 = 8, find the value of 𝑎𝑎. 

Solution.  ∫ 3𝑥𝑥2𝑎𝑎
0 𝑑𝑑𝑥𝑥 = 3∫ 𝑥𝑥2𝑎𝑎

0 𝑑𝑑𝑥𝑥 = 3 �𝑥𝑥
3

3
�

0

𝑎𝑎
= 𝑎𝑎3 
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Since  ∫ 3𝑥𝑥2𝑎𝑎
0 𝑑𝑑𝑥𝑥 = 8 

 Implies   𝑎𝑎3 = 8  i.e. 𝑎𝑎 = 2. 

 

2.6.3. Example. Show that when 𝑓𝑓(𝑥𝑥) is of the form 𝑎𝑎 + 𝑏𝑏𝑥𝑥 + 𝑠𝑠𝑥𝑥2, then  

  ∫ 𝑓𝑓(𝑥𝑥)1
0 𝑑𝑑𝑥𝑥 =  1

6
�𝑓𝑓(0) + 4𝑓𝑓 �1

2
� + 𝑓𝑓(1)� 

Solution. 𝑓𝑓(𝑥𝑥)  =  𝑎𝑎 +  𝑏𝑏𝑥𝑥 +  𝑠𝑠𝑥𝑥2 

  𝑓𝑓(0) =  𝑎𝑎,    𝑓𝑓 �1
2
� = 𝑎𝑎 + 1

2
𝑏𝑏 + 1

4
𝑠𝑠 

 𝑓𝑓(1) =  𝑎𝑎 + 𝑏𝑏 + 𝑠𝑠 

RHS =  1
6
�𝑓𝑓(0) + 4𝑓𝑓 �1

2
� + 𝑓𝑓(1)� = 𝑎𝑎 + 𝑏𝑏

2
+ 𝑠𝑠

3
 

LHS =  ∫ 𝑓𝑓(𝑥𝑥)1
0 𝑑𝑑𝑥𝑥 =  ∫ (𝑎𝑎 + 𝑏𝑏𝑥𝑥 + 𝑠𝑠𝑥𝑥2)1

0 𝑑𝑑𝑥𝑥 =  �𝑎𝑎𝑥𝑥 + 𝑏𝑏𝑥𝑥2

2
+ 𝑠𝑠𝑥𝑥3

3
�

0

1
= 𝑎𝑎 + 𝑏𝑏

2
+ 𝑠𝑠

3
  

Hence.  LHS = RHS. 

 

2.6.4. Example. Evaluate the following definite integrals 

 (i)  ∫ 𝑥𝑥
√1−𝑥𝑥2

1/2
0 𝑑𝑑𝑥𝑥    (ii)  ∫ 3𝑥𝑥√5 − 𝑥𝑥22

1 𝑑𝑑𝑥𝑥 (iii)  ∫ 𝑥𝑥√𝑥𝑥 − 438
4 𝑑𝑑𝑥𝑥 

(iv) ∫ log 𝑥𝑥
𝑥𝑥

𝑏𝑏
𝑎𝑎 𝑑𝑑𝑥𝑥    (v)  ∫ 𝑑𝑑𝑥𝑥

4+𝑥𝑥−𝑥𝑥2
2

0     (vi)  ∫ 𝑑𝑑𝑥𝑥
(𝑥𝑥−3)√𝑥𝑥+1

15
8  

Solution. (i)  𝐼𝐼 = ∫ 𝑥𝑥
√1−𝑥𝑥2

1/2
0 𝑑𝑑𝑥𝑥   

 Put 1 − 𝑥𝑥2 = 𝑡𝑡,   then   −2𝑥𝑥𝑑𝑑𝑥𝑥 = 𝑑𝑑𝑡𝑡  or  𝑥𝑥𝑑𝑑𝑥𝑥 = − 1
2
𝑑𝑑𝑡𝑡 

 When 𝑥𝑥 =  0 , 𝑡𝑡 = 1 

When  𝑥𝑥 = 1
2

, 𝑡𝑡 = 3
4
 

Therefore,  𝐼𝐼 = ∫ 𝑥𝑥
√1−𝑥𝑥2

1/2
0 𝑑𝑑𝑥𝑥 =  − 1

2 ∫ 𝑡𝑡−1/23/4
1 𝑑𝑑𝑡𝑡 =  − 1

2
�𝑡𝑡

1/2

1/2
�

1

3/4
= 1 − √3

2
 

(ii)  𝐼𝐼 = ∫ 3𝑥𝑥√5 − 𝑥𝑥22
1 𝑑𝑑𝑥𝑥 

  Put  5 − 𝑥𝑥2 = 𝑡𝑡,   therefore  −2𝑥𝑥𝑑𝑑𝑥𝑥 = 𝑑𝑑𝑡𝑡   or    𝑥𝑥𝑑𝑑𝑥𝑥 = − 1
2
𝑑𝑑𝑡𝑡 

  When 𝑥𝑥 =  1 , 𝑡𝑡 = 5 − 1 = 4 

When  𝑥𝑥 = 2, 𝑡𝑡 = 5 − 4 = 1 
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Therefore,  𝐼𝐼 = ∫ 3𝑥𝑥√5 − 𝑥𝑥22
1 𝑑𝑑𝑥𝑥 =  − 3

2 ∫ 𝑡𝑡
1
2

1
4 𝑑𝑑𝑡𝑡 =  − 3

2
�𝑡𝑡

3
2

3
2
�

4

1

 

       = −(1 − 4
3
2) =  −(1 − 8) =  7. 

(iii)  𝐼𝐼 = ∫ 𝑥𝑥√𝑥𝑥 − 438
4 𝑑𝑑𝑥𝑥 =  ∫ 𝑥𝑥(𝑥𝑥 − 4)1/38

4  𝑑𝑑𝑥𝑥  

 Put  𝑥𝑥 − 4 = 𝑡𝑡,    therefore,  𝑑𝑑𝑥𝑥 = 𝑑𝑑𝑡𝑡 

 When  𝑥𝑥 = 4, 𝑡𝑡 = 0 

 When  𝑥𝑥 = 8, 𝑡𝑡 = 4 

Therefore,     𝐼𝐼 = ∫ (𝑡𝑡 + 4)(𝑡𝑡)1/34
0  𝑑𝑑𝑥𝑥 =  ∫ 𝑡𝑡4/34

0 𝑑𝑑𝑡𝑡 + 4∫ 𝑡𝑡1/34
0 𝑑𝑑𝑡𝑡 

 = 3
7
�𝑡𝑡7/3�

0
4

+ 4 × 3
4
�𝑡𝑡4/3�

0
4
 

 =  3
7

(4)7/3 + 3(4)4/3 =  132
7

(4)1/3. 

(iv)  𝐼𝐼 = ∫ log 𝑥𝑥
𝑥𝑥

𝑏𝑏
𝑎𝑎 𝑑𝑑𝑥𝑥 

 Put  log 𝑥𝑥 = 𝑡𝑡,     therefore  1
𝑥𝑥
𝑑𝑑𝑥𝑥 = 𝑑𝑑𝑡𝑡 

When   𝑥𝑥 = 𝑎𝑎,    𝑡𝑡 = log𝑎𝑎 

When   𝑥𝑥 = 𝑏𝑏,    𝑡𝑡 = log 𝑏𝑏 

Therefore,      𝐼𝐼 = ∫ 𝑡𝑡log 𝑏𝑏
log 𝑎𝑎 𝑑𝑑𝑡𝑡 =  �𝑡𝑡

2

2
�

log 𝑎𝑎

log 𝑏𝑏
=  1

2
[(log 𝑏𝑏)2 − (log𝑎𝑎)2] 

 = 1
2

(log 𝑏𝑏 + log 𝑎𝑎)(log𝑏𝑏 − log 𝑎𝑎) =  1
2

log(𝑎𝑎𝑏𝑏) log �𝑏𝑏
𝑎𝑎
� 

(v)     𝐼𝐼 = ∫ 𝑑𝑑𝑥𝑥
4+𝑥𝑥−𝑥𝑥2

2
0 =  ∫ 𝑑𝑑𝑥𝑥

4−(𝑥𝑥2−𝑥𝑥)
2

0  

 = ∫ 𝑑𝑑𝑥𝑥

4−�𝑥𝑥−1
2�

2
+1

4

2
0 =  ∫ 𝑑𝑑𝑥𝑥

17
4 −�𝑥𝑥−

1
2�

2
2

0  

   =  ∫ 𝑑𝑑𝑥𝑥

�√17
2 �

2
−�𝑥𝑥−1

2�
2

2
0  

 = 1

2�17
2

�log�
𝑥𝑥−1

2+�17
2

−𝑥𝑥+1
2+�17

2

��

0

2

 

 = 1
√17

�log �√17+3
√17−3

� − log �√17−1
√17+1

�� 

 = 1
√17

log �17+3+4√17
17+3−4√17

� =  1
√17

log �20+4√17
20−4√17

� 
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 = 1
√17

log �4(5+√17)
4(5−√17)

� =  1
√17

log �5+√17
5−√17

× 5+√17
5+√17

� 

 = 1
√17

log �42+10√17
8

� 

 = 1
√17

log �21+5√17
4

� 

(vi)   𝐼𝐼 = ∫ 𝑑𝑑𝑥𝑥
(𝑥𝑥−3)√𝑥𝑥+1

15
8  

  Put  𝑥𝑥 + 1 = 𝑡𝑡2,    then  𝑑𝑑𝑥𝑥 = 2𝑡𝑡𝑑𝑑𝑡𝑡 

When  𝑥𝑥 = 8,    𝑡𝑡2 = 9,    implies 𝑡𝑡 = 3 

When  𝑥𝑥 = 15,    𝑡𝑡2 = 16,    implies 𝑡𝑡 = 4 

Therefore,   𝐼𝐼 = 2 ∫ 𝑑𝑑𝑡𝑡
𝑡𝑡2−22

4
3 = 2. 1

4
�log �𝑡𝑡−2

𝑡𝑡+2
�

3

4
� 

          = 1
2
�log �2

6
� − log 1

5
� = 1

2
�log 1

3
− log 1

5
� 

          = 1
2

log 5
3
 

2.6.5. Example. Evaluate the following 

 (i)  ∫ 𝑥𝑥2𝑠𝑠2𝑥𝑥1
0 𝑑𝑑𝑥𝑥   (ii)  ∫ (𝑥𝑥 − 2)(2𝑥𝑥 + 3)𝑠𝑠𝑥𝑥1

0 𝑑𝑑𝑥𝑥 

(iii)  ∫ 𝑥𝑥2+𝑥𝑥
√2𝑥𝑥+1

4
2 𝑑𝑑𝑥𝑥    (iv)  ∫ 𝑠𝑠𝑥𝑥

𝑥𝑥
𝑠𝑠

1 (1 + 𝑥𝑥𝑙𝑙𝑙𝑙𝑙𝑙 𝑥𝑥)dx 

Solution.  (i) 𝐼𝐼 = ∫ 𝑥𝑥2𝑠𝑠2𝑥𝑥1
0 𝑑𝑑𝑥𝑥 

 = �𝑥𝑥2 �𝑠𝑠
2𝑥𝑥

2
��

0

1
− ∫ 2𝑥𝑥 �1

2
𝑠𝑠2𝑥𝑥�1

0 𝑑𝑑𝑥𝑥 

 = 1
2

(𝑠𝑠2 − 0) − ���𝑥𝑥𝑠𝑠
2𝑥𝑥

2
��

0

1
− ∫ �1

2
𝑠𝑠2𝑥𝑥�1

0 𝑑𝑑𝑥𝑥� 

 = 1
2
𝑠𝑠2 − �1

2
𝑠𝑠2 − 1

2 ∫ 𝑠𝑠2𝑥𝑥1
0 𝑑𝑑𝑥𝑥� =  1

2 ∫ 𝑠𝑠2𝑥𝑥1
0 𝑑𝑑𝑥𝑥 

 = 1
2
�1

2
𝑠𝑠2𝑥𝑥�

0

1
=  1

2
(𝑠𝑠2 − 1). 

(ii)     𝐼𝐼 = ∫ (𝑥𝑥 − 2)(2𝑥𝑥 + 3)𝑠𝑠𝑥𝑥1
0 𝑑𝑑𝑥𝑥 

 = ∫ (2𝑥𝑥2 − 𝑥𝑥 − 6)𝑠𝑠𝑥𝑥1
0 𝑑𝑑𝑥𝑥 

Integrating by parts, we get 

 = [(2𝑥𝑥2 − 𝑥𝑥 − 6)𝑠𝑠𝑥𝑥]0
1 − ∫ (4𝑥𝑥 − 1)𝑠𝑠𝑥𝑥1

0 𝑑𝑑𝑥𝑥 

 = (2 − 1 − 6)𝑠𝑠 − (−6) − ∫ (4𝑥𝑥 − 1)𝑠𝑠𝑥𝑥1
0 𝑑𝑑𝑥𝑥 
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 = −5𝑠𝑠 + 6 − �|(4𝑥𝑥 − 1)𝑠𝑠𝑥𝑥 |0
1 − ∫ 4𝑠𝑠𝑥𝑥1

0 𝑑𝑑𝑥𝑥� 

 = −5𝑠𝑠 + 6 − [(4 − 1)𝑠𝑠 − (−1) − 4|𝑠𝑠𝑥𝑥 |0
1] 

 = −5𝑠𝑠 + 6[3𝑠𝑠 + 1 − 4(𝑠𝑠 − 1)] 

 = 1 − 4𝑠𝑠. 

(iii)  𝐼𝐼 = ∫ 𝑥𝑥2+𝑥𝑥
√2𝑥𝑥+1

4
2 𝑑𝑑𝑥𝑥 

Integrating by parts taking 𝑥𝑥2 + 𝑥𝑥 as first function and 1
√2𝑥𝑥−1

 as the 2nd function. 

 𝐼𝐼 = �(𝑥𝑥2 + 𝑥𝑥)∫ 𝑑𝑑𝑥𝑥
√2𝑥𝑥+1

�
2

4
− ∫ �(2𝑥𝑥 + 1)∫ 𝑑𝑑𝑥𝑥

√2𝑥𝑥+1
�4

2 𝑑𝑑𝑥𝑥 

 Now  ∫ 𝑑𝑑𝑥𝑥
√2𝑥𝑥+1

=  (2𝑥𝑥+1)−
1
2+1

2.12
=  √2𝑥𝑥 + 1 

Therefore,      𝐼𝐼 = �(𝑥𝑥2 + 𝑥𝑥)√2𝑥𝑥 + 1�
2

4
− ∫ (2𝑥𝑥 + 1)√2𝑥𝑥 + 14

2 𝑑𝑑𝑥𝑥 

 = �60 − 6√5� − ∫ (2𝑥𝑥 + 1)3/24
2 𝑑𝑑𝑥𝑥 

 = �60 − 6√5� − �(2𝑥𝑥+1)5/2

5
�

2

4
 

 = 60 − 6√5 − 1
5
�95/2 − 55/2� = 60 −  6√5 − 243

5
+ 5√5 

 = 57
2
− √5. 

(iv)  𝐼𝐼 = ∫ 𝑠𝑠𝑥𝑥

𝑥𝑥
𝑠𝑠

1 (1 + 𝑥𝑥𝑙𝑙𝑙𝑙𝑙𝑙 𝑥𝑥)𝑑𝑑𝑥𝑥 =  ∫ 𝑠𝑠𝑥𝑥 �1
𝑥𝑥

+ log 𝑥𝑥�𝑠𝑠
1 𝑑𝑑𝑥𝑥 

 = ∫ 𝑠𝑠𝑥𝑥[𝑓𝑓′(𝑥𝑥) + 𝑓𝑓(𝑥𝑥)]𝑑𝑑𝑥𝑥       where 𝑓𝑓(𝑥𝑥) = log 𝑥𝑥 

 = 𝑠𝑠𝑥𝑥𝑓𝑓(𝑥𝑥) =  𝑠𝑠𝑥𝑥 log 𝑥𝑥 

Therefore,  

 𝐼𝐼 = ∫ 𝑠𝑠𝑥𝑥

𝑥𝑥
𝑠𝑠

1 (1 + 𝑥𝑥𝑙𝑙𝑙𝑙𝑙𝑙 𝑥𝑥)𝑑𝑑𝑥𝑥 = [𝑠𝑠𝑥𝑥 log 𝑥𝑥]1
𝑠𝑠 =  𝑠𝑠𝑥𝑥 log 𝑠𝑠 −  𝑠𝑠 log 1 =  𝑠𝑠𝑥𝑥   

2.7. Definite Integral as area under the curve. 

Let 𝑓𝑓(𝑥𝑥) be finite and continuous in 𝑎𝑎 ≤  𝑥𝑥 ≤  𝑏𝑏. Then area of the region bounded by 𝑥𝑥axis, 𝑦𝑦 =
 𝑓𝑓(𝑥𝑥) and the ordinates at 𝑥𝑥 =  𝑎𝑎 and 𝑥𝑥 =  𝑏𝑏 is equal to  ∫ 𝑓𝑓 (𝑥𝑥)𝑏𝑏

𝑎𝑎  𝑑𝑑𝑥𝑥. 

Proof. Let 𝐴𝐴𝐵𝐵 be the curve 𝑦𝑦 =  𝑓𝑓(𝑥𝑥) and 𝑃𝑃(𝑥𝑥,𝑦𝑦) be any point on the curve such that 𝑎𝑎 ≤ 

𝑥𝑥 ≤  𝑏𝑏. Let 𝐷𝐷𝐴𝐴 and 𝐶𝐶𝐵𝐵 be the ordinates 𝑥𝑥 =  𝑎𝑎 and 𝑥𝑥 =  𝑏𝑏. 

Take point 𝑄𝑄(𝑥𝑥 + 𝛿𝛿𝑥𝑥,𝑦𝑦 +  𝛿𝛿𝑦𝑦) near to the point 𝑃𝑃(𝑥𝑥,𝑦𝑦). Draw 𝑃𝑃𝑃𝑃 and 𝑄𝑄𝑄𝑄 parallel to 𝑥𝑥-axis. 

Clearly 𝑃𝑃𝑃𝑃 =  𝛿𝛿𝑥𝑥 and 𝑄𝑄𝑃𝑃 =  𝛿𝛿𝑦𝑦. 



Integration 53 
Let 𝑃𝑃 represent the area bounded by the curve 𝑦𝑦 =  𝑓𝑓(𝑥𝑥), 𝑥𝑥-axis and the ordinates 𝐴𝐴𝐷𝐷 (𝑥𝑥 = 𝑎𝑎) and the 
variable ordinate 𝑃𝑃𝑃𝑃. 

 
Therefore, If 𝛿𝛿𝑥𝑥 is increment in 𝑥𝑥, then 𝛿𝛿𝑃𝑃 is increment in 𝑃𝑃. 

It is clear from figure that 𝛿𝛿𝑃𝑃 is the area that lies between the rect. 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 and rect. 𝑄𝑄𝑄𝑄𝑃𝑃𝑃𝑃. 

Also area of rect. 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  𝑦𝑦. 𝛿𝛿𝑥𝑥 and area of rect. 𝑄𝑄𝑄𝑄𝑃𝑃𝑃𝑃 =  (𝑦𝑦 +  𝛿𝛿𝑦𝑦) 𝛿𝛿𝑥𝑥 

Therefore,  𝑦𝑦𝛿𝛿𝑥𝑥 <  𝛿𝛿𝑃𝑃 <  (𝑦𝑦 + 𝛿𝛿𝑦𝑦) 𝛿𝛿𝑥𝑥 

Or    𝑦𝑦 <  𝛿𝛿𝑃𝑃
𝛿𝛿𝑥𝑥

< 𝑦𝑦 + 𝛿𝛿𝑦𝑦 

When 𝑄𝑄 → 𝑃𝑃,  𝛿𝛿𝑥𝑥 → 0,   𝛿𝛿𝑦𝑦 → 0 

And  lim𝛿𝛿𝑥𝑥→0
𝛿𝛿𝑃𝑃
𝛿𝛿𝑥𝑥
→ 𝑑𝑑𝑃𝑃

𝑑𝑑𝑥𝑥
,  we get 

 𝑑𝑑𝑃𝑃
𝑑𝑑𝑥𝑥

= 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) 

Therefore,  ∫ 𝑓𝑓(𝑥𝑥)𝑏𝑏
𝑎𝑎 𝑑𝑑𝑥𝑥 =  ∫ 𝑑𝑑𝑃𝑃

𝑑𝑑𝑥𝑥
𝑏𝑏
𝑎𝑎 . 𝑑𝑑𝑥𝑥 =  ∫ 𝑑𝑑𝑠𝑠𝑏𝑏

𝑎𝑎 =  |𝑃𝑃|𝑎𝑎𝑏𝑏 = (𝑃𝑃)𝑥𝑥=𝑏𝑏 − (𝑃𝑃)𝑥𝑥=𝑎𝑎  

But it is clear from the figure, when 𝑥𝑥 =  𝑎𝑎, 𝑃𝑃 =  0, because then 𝑃𝑃𝑃𝑃 and 𝐴𝐴𝐷𝐷 coincide and then 𝑥𝑥 =  𝑏𝑏, 
S = area 𝐴𝐴𝐵𝐵𝐶𝐶𝐷𝐷 = reqd. area. 

Therefore, 

 ∫ 𝑓𝑓(𝑥𝑥)𝑏𝑏
𝑎𝑎 𝑑𝑑𝑥𝑥 = Area 𝐴𝐴𝐵𝐵𝐶𝐶𝐷𝐷. 

Thus the area bounded by the curve 𝑦𝑦 =  𝑓𝑓(𝑥𝑥), the 𝑥𝑥 axis and the ordinates 𝑥𝑥 =  𝑎𝑎 and 𝑥𝑥 = 𝑏𝑏 is 

∫ 𝑓𝑓 (𝑥𝑥)𝑏𝑏
𝑎𝑎  𝑑𝑑𝑥𝑥. 

Remarks. In the figure given, we assumed that 𝑓𝑓(𝑥𝑥 ≥  0) for all 𝑥𝑥 in 𝑎𝑎 ≤  𝑥𝑥 ≤  𝑏𝑏. However, if 

(i) 𝑓𝑓(𝑥𝑥)  ≤  0 for all 𝑥𝑥 in 𝑎𝑎 ≤  𝑥𝑥 ≤  𝑏𝑏, then area bounded by 𝑥𝑥-axis, the curve 𝑦𝑦 =  𝑓𝑓(𝑥𝑥) and the 
ordinate 𝑥𝑥 =  𝑎𝑎 to 𝑥𝑥 =  𝑏𝑏 is given by 

= � 𝑓𝑓 (𝑥𝑥)
𝑏𝑏

𝑎𝑎
 𝑑𝑑𝑥𝑥. 
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(ii) If 𝑓𝑓(𝑥𝑥)  ≥  0 for 𝑎𝑎 ≤  𝑥𝑥 ≤  𝑠𝑠 and 𝑓𝑓 (𝑥𝑥)  ≤  0 for 𝑠𝑠 ≤  𝑥𝑥 ≤  𝑏𝑏, then area bounded by 𝑥𝑥 =  𝑓𝑓(𝑥𝑥), 

𝑥𝑥-axis and the ordinates 𝑥𝑥 =  𝑎𝑎, 𝑥𝑥 =  𝑏𝑏, is 

 

 = ∫ 𝑓𝑓(𝑥𝑥)𝑠𝑠
𝑎𝑎 𝑑𝑑𝑥𝑥 + ∫ −𝑓𝑓(𝑥𝑥)𝑏𝑏

𝑠𝑠 𝑑𝑑𝑥𝑥 

 = ∫ 𝑓𝑓(𝑥𝑥)𝑠𝑠
𝑎𝑎 𝑑𝑑𝑥𝑥 − ∫ 𝑓𝑓(𝑥𝑥)𝑏𝑏

𝑠𝑠 𝑑𝑑𝑥𝑥 

(iii) The area of the region bounded by 𝑦𝑦1  =  𝑓𝑓1(𝑥𝑥) and 𝑦𝑦2  =  𝑓𝑓2(𝑥𝑥)  and the ordinates 𝑥𝑥 =  𝑎𝑎 and 
𝑥𝑥 =  𝑏𝑏 is given by 

 =  ∫ 𝑓𝑓2(𝑥𝑥)𝑏𝑏
𝑎𝑎 𝑑𝑑𝑥𝑥 − ∫ 𝑓𝑓1(𝑥𝑥)𝑏𝑏

𝑎𝑎 𝑑𝑑𝑥𝑥 

 
where 𝑓𝑓2(𝑥𝑥) is 𝑦𝑦2 of upper curve and 𝑓𝑓1(𝑥𝑥) is 𝑦𝑦1 of lower curve i.e., 

Required area = ∫ [𝑏𝑏𝑎𝑎 𝑓𝑓2(𝑥𝑥) − 𝑓𝑓1(𝑥𝑥)]𝑑𝑑𝑥𝑥 =  ∫ (𝑦𝑦2 − 𝑦𝑦1)𝑏𝑏
𝑎𝑎 𝑑𝑑𝑥𝑥. 
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2.7.1. Example.  

(a) Calculate the area under the curve 𝑦𝑦 =  2√ 𝑥𝑥 included between the lines 𝑥𝑥 =  0 and 𝑥𝑥 =  1. 

(b) Find the area under the curve 𝑦𝑦 =  √3𝑥𝑥 +  4 between 𝑥𝑥 =  0 and 𝑥𝑥 =  4. 

Solution.  (a)   𝑦𝑦 =  2 √𝑥𝑥   implies 𝑦𝑦2  =  4𝑥𝑥 

𝑦𝑦 =  2 √𝑥𝑥 is the upper part of the parabola 𝑦𝑦2  =  4𝑥𝑥. We have to find the area of the shaded 
region 𝑂𝑂𝐴𝐴𝐵𝐵. 

 

   Required area  = ∫ 𝑦𝑦1
0 𝑑𝑑𝑥𝑥 

 = ∫ 2 √𝑥𝑥
1

0 𝑑𝑑𝑥𝑥 = 2 �𝑥𝑥
3/2

3/2
�

0

1
=  4

3
 sq. units 

(b) 𝑦𝑦 =  √3𝑥𝑥 +  4 , therefore, 𝑦𝑦2  =  3𝑥𝑥 + 4.  𝑦𝑦 =  √3𝑥𝑥 +  4 is the upper part of the parabola  
𝑦𝑦2  =  3𝑥𝑥 + 4. We have to find the area of the shaded region. 

 

Required area OABC = ∫ 𝑦𝑦4
0 𝑑𝑑𝑥𝑥 = ∫ √3𝑥𝑥 + 44

0 𝑑𝑑𝑥𝑥 

 = 2
9
�(3𝑥𝑥 + 4)3/2�

0
4

=  112
9

 sq. units 

2.7.2. Example. Find the area bounded by   𝑥𝑥 =  𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠  𝑥𝑥,   𝑦𝑦 =  0 and 𝑥𝑥 =  2 . 

Solution. Required area ABC = ∫ 𝑦𝑦2
1 𝑑𝑑𝑥𝑥 =  ∫ log 𝑥𝑥2

1 𝑑𝑑𝑥𝑥 

 = |𝑥𝑥 log 𝑥𝑥 − 𝑥𝑥|1
2 = 2 log 2 − 1 = log 4 − 1. 
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2.7.3. Example. Find the area included between two curves 𝑦𝑦2  =  4𝑎𝑎𝑥𝑥 and 𝑥𝑥2  =  4 𝑎𝑎𝑦𝑦. 

Solution. As shown in the figure, we have to find the area 𝑂𝑂𝐴𝐴𝑃𝑃𝐵𝐵𝑂𝑂. 

 
Solving the given two equations simultaneously, we have 

  𝑥𝑥4  =  16𝑎𝑎2𝑦𝑦2  =  16𝑎𝑎2(4𝑎𝑎𝑥𝑥) 

or  𝑥𝑥4 =  64𝑎𝑎3𝑥𝑥  implies  𝑥𝑥4 −  64𝑎𝑎3𝑥𝑥 = 0, 

or  𝑥𝑥(𝑥𝑥3 −  64𝑎𝑎3) = 0 

or   𝑥𝑥 = 0, 𝑥𝑥3 =  64𝑎𝑎3 

Therefore,  𝑥𝑥 = 0 at 𝑂𝑂 and  𝑥𝑥 = 4𝑎𝑎 at 𝐵𝐵. 

Now  

  Area 𝑂𝑂𝐴𝐴𝑃𝑃𝐵𝐵𝑂𝑂 = Area 𝑂𝑂𝐴𝐴𝑃𝑃𝑃𝑃𝑂𝑂 - Area 𝑂𝑂𝐵𝐵𝑃𝑃𝑃𝑃𝑂𝑂 

 = ∫ 𝑦𝑦1
4𝑎𝑎

0 𝑑𝑑𝑥𝑥 − ∫ 𝑦𝑦2
4𝑎𝑎

0 𝑑𝑑𝑥𝑥 =  ∫ 2𝑎𝑎1/2𝑥𝑥1/24𝑎𝑎
0 𝑑𝑑𝑥𝑥 − ∫ 𝑥𝑥2

4𝑎𝑎
4𝑎𝑎

0 𝑑𝑑𝑥𝑥 

 = 2𝑎𝑎1/2 ∫ 𝑥𝑥1/24𝑎𝑎
0 𝑑𝑑𝑥𝑥 −  1

4𝑎𝑎 ∫ 𝑥𝑥24𝑎𝑎
0 𝑑𝑑𝑥𝑥 

 =  2𝑎𝑎1/2 × 2
3
�𝑥𝑥3/2�

0
4𝑎𝑎
− 1

4𝑎𝑎
× 1

3
|𝑥𝑥3|0

4𝑎𝑎  

 = 16
3
𝑎𝑎2sq. units 
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2.7.4. Example.  Find the area cut-off from the parabola 4𝑦𝑦 =  3𝑥𝑥2  by the straight line 2𝑦𝑦 = 3𝑥𝑥 + 12. 

Solution. Let the points of intersection of the parabola and the line be 𝐴𝐴 and 𝐵𝐵 as shown in the figure. 
Draw 𝐴𝐴𝑃𝑃 and 𝐵𝐵𝑃𝑃 perpendiculars to 𝑥𝑥-axis. 

 
Now putting 

 𝑦𝑦 = 3
4
𝑥𝑥2  in 2𝑦𝑦 = 3𝑥𝑥 + 12 

We set     3
2
𝑥𝑥2 = 3𝑥𝑥 + 12  

or   3𝑥𝑥2 − 6𝑥𝑥 + 24 = 0 

or  𝑥𝑥2 − 2𝑥𝑥 − 8 = 0 

or  𝑥𝑥 = 4, 𝑥𝑥 = −2 

Then,      𝑦𝑦 = 12,   𝑦𝑦 = 3. 

The co-ordinates of the point 𝐴𝐴 are (4, 12) and co-ordinates of 𝐵𝐵 are (−2, 3). 

Now,  Required area 𝐴𝐴𝑂𝑂𝐵𝐵 

= Area of trapezium 𝐵𝐵𝑃𝑃𝑃𝑃𝐴𝐴 -[Area 𝐵𝐵𝑃𝑃𝑂𝑂 + Area 𝑂𝑂𝑃𝑃𝐴𝐴] 

But area of trapezium 

= 1
2
(sumof ||sides) Height 

   = 1
2

× (12 +  3) × 6 =  15 × 3 = 45. 

Area 𝐵𝐵𝑃𝑃𝑂𝑂 + Area 𝑂𝑂𝑃𝑃𝐴𝐴  = ∫ 𝑦𝑦4
−2 𝑑𝑑𝑥𝑥 

          = 3
4 ∫ 𝑥𝑥24

−2 𝑑𝑑𝑥𝑥 =  3
4
�𝑥𝑥

3

3
�
−2

4
= 18. 

Hence required area =  45 −  18 =  27 sq. units. 

2.7.5. Example. Find the area bounded by the parabola 𝑦𝑦2  =  2𝑥𝑥 and the ordinates 𝑥𝑥 =  1 and 𝑥𝑥 =  4. 

Solution. The equation of the parabola is 𝑦𝑦2  =  2𝑥𝑥 which is of the form 𝑦𝑦2  =  4𝑎𝑎𝑥𝑥. The parabola is 
symmetrical about 𝑥𝑥-axis and opens towards right. 
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In the first quadrant 𝑦𝑦 ≥  0.  

Required Area = 𝑃𝑃𝑃𝑃𝑃𝑃′𝑃𝑃′ 

= 2 area 𝐴𝐴𝐵𝐵𝑃𝑃𝑃𝑃 

 = 2 ∫ 𝑦𝑦4
1 𝑑𝑑𝑥𝑥 = 2∫ √2𝑥𝑥1/24

1 𝑑𝑑𝑥𝑥 

 = 2√2 �𝑥𝑥
3/2

3/2
�
1

4
=  28√2

3
 sq. units. 

2.7.6. Example. Make a rough sketch of the graph of the function 𝑦𝑦 = 4
𝑥𝑥2  (1 ≤ 𝑥𝑥 ≤ 3), and find the area 

enclosed between the curve, the 𝑥𝑥-axis and the liens 𝑥𝑥 =  1 and 𝑥𝑥 =  3. 

Solution. Given equation of the curve is 

 𝑦𝑦 = 4
𝑥𝑥2 , (1 ≤ 𝑥𝑥 ≤ 3)  

Therefore,  𝑦𝑦 > 0  i.e., the curve lies above the 𝑥𝑥-axis. 

When 𝑥𝑥 = 1, 2, 3,   then 𝑦𝑦 = 4, 1, 0.44 respectively. 

 

  Required area = ∫ 𝑦𝑦3
1 𝑑𝑑𝑥𝑥  

 = ∫ 4
𝑥𝑥2

3
1 𝑑𝑑𝑥𝑥 = 4 �− 1

𝑥𝑥
�
1

3
= 8

3
 sq. units. 

2.7.7. Example. Find the area of the region {(𝑥𝑥,𝑦𝑦) ∶  𝑥𝑥2  ≤  𝑦𝑦 ≤  𝑥𝑥} . 
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Solution. Let us first sketch the region whose area is to be found out.  The required area is the area 
included between the curves  𝑥𝑥2 = 𝑦𝑦 and 𝑦𝑦 = 𝑥𝑥. 

 
Solving these two equations simultaneously, we have 

 𝑥𝑥2 = 𝑥𝑥  implies  𝑥𝑥2 − 𝑥𝑥 = 0 

or 𝑥𝑥(𝑥𝑥 − 1) =  0 

or  𝑥𝑥 = 0, 𝑥𝑥 = 1  

When  𝑥𝑥 = 0, 𝑦𝑦 = 0   and 𝑥𝑥 = 1, 𝑦𝑦 = 1. 

Therefore, these two curves intersect each other at two points 𝑂𝑂(0, 0) and 𝐴𝐴(1,1). 

   Required area =  ∫ 𝑥𝑥1
0 𝑑𝑑𝑥𝑥 −  ∫ 𝑥𝑥21

0 𝑑𝑑𝑥𝑥  

 =  �𝑥𝑥
2

2
�

0

1
− �𝑥𝑥

3

3
�

0

1
=  1

6
 sq. units. 

2.7.8. Example. Find the area of the region {(𝑥𝑥,𝑦𝑦) ∶  𝑥𝑥2  ≤  𝑦𝑦 ≤  |𝑥𝑥| } . 

Solution. Let us first sketch the region whose area is to be found out. 

The required area is the area included between the curves 𝑥𝑥2 =  𝑦𝑦 and 𝑦𝑦 =  |𝑥𝑥|. 

The graph of 𝑥𝑥2 =  𝑦𝑦 is a parabola with vertex (0, 0) and axis y-axis as shown in figure. 

The graph of 𝑦𝑦 =  |𝑥𝑥| is the union of lines 𝑦𝑦 =  𝑥𝑥, 𝑥𝑥 ≥  0 and 𝑦𝑦 =  −𝑥𝑥, 𝑥𝑥 ≤  0. 

The required region is the shaded region. 
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Therefore,   the required area = Area 𝑂𝑂𝐴𝐴𝐵𝐵+Area 𝑂𝑂𝐶𝐶𝐷𝐷 

     2 Area OCD 

 = 2 ∫ 𝑥𝑥1
0 𝑑𝑑𝑥𝑥 − 2∫ 𝑥𝑥21

0 𝑑𝑑𝑥𝑥 

 = 2 �𝑥𝑥
2

2
�

0

1
− 2 �𝑥𝑥

3

3
�

0

1
=  1

3
 sq. units. 

2.7.9. Example. Using integration find the area of the triangular region whose sides have the 

Equation 

𝑦𝑦 =  2𝑥𝑥 + 1    …(1) 

𝑦𝑦 =  3𝑥𝑥 + 1    …(2) 

and        𝑥𝑥 =  4     …(3) 

Solution. Solving (1) and (3), we get 𝑥𝑥 =  4,𝑦𝑦 =  2 × 4 + 1 =  9. 

Therefore,  (4, 9) is the point of intersection of lines (1) and (3). 

Solving (1) and (2), we get 𝑥𝑥 =  0, 𝑦𝑦 =  1. 

 Therefore, (0, 1) is the point of intersection of lines (1) and (2). 

Solving (2) and (3), we get 𝑥𝑥 =  4, 𝑦𝑦 =  3 × 4 +  1 =  13 . 

 Therefore, (4, 13) is the point of intersection of lines (2) and (3) 

 

Required area ABC =  ∫ (3𝑥𝑥 + 1)4
0 𝑑𝑑𝑥𝑥 −  ∫ (2𝑥𝑥 + 1)4

0 𝑑𝑑𝑥𝑥 

        =  �3𝑥𝑥
2

2
+ 𝑥𝑥�

0

4
− �2𝑥𝑥

2

2
+ 𝑥𝑥�

0

4
= 8 sq. units. 

2.8. Learning Curve. 

Learning curve is a technique with the help of which we can estimate the cost and time of production 
process of a product. With passage of time, the production process becomes increasingly mature and 
reaches a steady state. It so happens because with gain in experience with time, time taken to produce 
one unit of a product steadily decreases and in the last attains a stable value.  
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The general form of the learning curve is given by 

 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) =  𝑎𝑎𝑥𝑥−𝑏𝑏  

where 𝑦𝑦 is the average time taken to produce one unit, and 𝑥𝑥 is the number of units produced, 𝑎𝑎 and 𝑏𝑏 
are the constants. 

𝑎𝑎 is defined as the time taken for producing the first unit (𝑥𝑥 =  𝐼𝐼) and 𝑏𝑏 is calculated by using 
the formula 

 𝑏𝑏 = log (𝑙𝑙𝑠𝑠𝑎𝑎𝑙𝑙𝑛𝑛𝑠𝑠𝑛𝑛𝑙𝑙  𝑙𝑙𝑎𝑎𝑡𝑡𝑠𝑠 )
log 2

 

If the learning curve is known, then total time (labour hours) required to produce units numbered from 𝑎𝑎 
to 𝑏𝑏 is given by 

    𝐿𝐿 = ∫ 𝑓𝑓(𝑥𝑥)𝑏𝑏
𝑎𝑎 𝑑𝑑𝑥𝑥 =  ∫ 𝐴𝐴. 𝑥𝑥𝑎𝑎𝑏𝑏

𝑎𝑎 𝑑𝑑𝑥𝑥    (another form of learning curve) 

2.8.1. Example. The first batch of 10 dolls is produced in 30 hours. Determine the time taken to produce 
next 10 dolls and again next 20 dolls, assuming a 60% learning rate. Estimate the time taken to produce 
first unit. 

New Time taken to produce one batch  

= Previous time taken to produce one batch × learning rate 

 

No. of dolls Total time (hours) Total increase in time Average time 

0  0 - - 

10 30 30 3 

20 20 �30×60
100

� = 36 6 1.8 

40 20 �36×60
100

� = 43.2 7.2 1.08 

Now,    𝛽𝛽 =  − log(0.6)
log 2

=  −0.7369 

When 𝑥𝑥 =  10 ,𝑦𝑦 =  3 , then 3 =  𝑎𝑎. 10−0.7369  

Solving the equation, we get  𝐴𝐴 =  16.38 hours. 

2.8.2. Example. Because of learning experience, there is a reduction in labour requirement in a firm. 
After producing 36 units, the firm has the learning curve 𝑓𝑓(𝑥𝑥)  =  1000 𝑥𝑥−1/2. Find the labour hours 
required to produce the next 28 units. 

Solution L = ∫ 1000𝑥𝑥−0.564
36 𝑑𝑑𝑥𝑥 

       = 1000[2𝑥𝑥1/2]36
64 = 2000[8 − 6] =  4000 hours. 
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2.8.3. Example. A firm’s learning curve after producing 100 units is given by 𝑓𝑓(𝑥𝑥)  =  2400 𝑥𝑥−0.5 
which is the rate of labour hours required to produce the 𝑥𝑥𝑡𝑡ℎ  unit. Find the hours needed to produce an 
additional 800 units. 

Solution. Labour hours required  

L =∫ 𝑓𝑓(𝑥𝑥)900
100 𝑑𝑑𝑥𝑥 

   =  ∫ 2400𝑥𝑥−0.5900
100 𝑑𝑑𝑥𝑥 = 2400 �𝑥𝑥

1/2

1/2
�

100

900
= 4800[30 − 10] =  96000 hours. 

2.9. Consumer and Producer Surplus. 

 

Consumer surplus is the difference between the price that a consumer is willing to pay and the actual 
price he pays for a commodity. The degree of satisfaction derived from a commodity is a subjective 
matter. 

If 𝐷𝐷𝐷𝐷1 is the market demand curve then demand 𝑥𝑥0 corresponds to the price 𝑝𝑝0. The consumer surplus is 
given by 𝐷𝐷𝐷𝐷1𝑝𝑝0. 

  𝐷𝐷𝐷𝐷1𝑝𝑝0 = Area 𝐷𝐷𝐷𝐷1𝑥𝑥00 −  𝜑𝜑0𝐷𝐷1𝑥𝑥0𝑂𝑂 

 =  ∫ 𝑓𝑓(𝑥𝑥)𝑥𝑥0
0 𝑑𝑑𝑥𝑥 − 𝑝𝑝0𝑥𝑥0 

where 𝑓𝑓(𝑥𝑥) is the demand function. 

It is assumed that the area is defined at 𝑥𝑥 =  0 and that the satisfaction is measurable in terms of price 
for all consumers. In other words, we assume that utility function is same for all consumers and 
marginal utility of money is constant. 

2.9.1. Example. Find the consumer surplus if the demand function is 𝑝𝑝 =  25 − 2𝑥𝑥 and the surplus 
function is 4𝑝𝑝 =  10 + 𝑥𝑥. 

Solution. First find the equilibrium price 𝑝𝑝0 and equilibrium demand, 𝑥𝑥0 by solving the above two 
equations simultaneously, we have 

 𝑥𝑥0 = 10  and 𝑝𝑝0 = 5 

Now consumer surplus = ∫ 𝑓𝑓(𝑥𝑥)𝑥𝑥0
0 𝑑𝑑𝑥𝑥 − 𝑝𝑝0𝑥𝑥0 

 = ∫ (25 − 2𝑥𝑥)10
0 𝑑𝑑𝑥𝑥 − 5 × 10  

 = [25𝑥𝑥 − 𝑥𝑥2]0
10 − 50 = 100. 

2.10. Producer Surplus 

Producer surplus is the difference in the prices a producer expects to get and the price which he actually 
gets for a commodity. 
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If 𝑃𝑃𝑃𝑃1 is the market supply curve and if 𝑥𝑥0 is the supply at the market price 𝑝𝑝0, the producer surplus is 
the area 𝑃𝑃𝑃𝑃. 

 𝑃𝑃𝑃𝑃 = Area  𝑃𝑃𝑃𝑃1𝑃𝑃0  =  𝑝𝑝0𝑥𝑥0  −   ∫ 𝑙𝑙(𝑥𝑥)𝑥𝑥
0 𝑑𝑑𝑥𝑥 

where 𝑙𝑙(𝑥𝑥) is the supply function. 

2.10.1. Example. Find the producer surplus for the supply function 𝑝𝑝2  −  𝑥𝑥 =  9  when 𝑥𝑥0 =  7 

Solution. We are given 𝑝𝑝2  −  𝑥𝑥 =  9  or 𝑝𝑝0
2  −  𝑥𝑥0  =  9 

Also given 𝑥𝑥0 =  7 

Therefore,  𝑝𝑝0 =  7 

Thus, 

 𝑃𝑃𝑃𝑃 =  𝑝𝑝0𝑥𝑥0  −   ∫ 𝑙𝑙(𝑥𝑥)𝑥𝑥
0 𝑑𝑑𝑥𝑥 

              = 4 × 7 − ∫ (𝑥𝑥 + 9)1/27
0 𝑑𝑑𝑥𝑥 

       = 28 − �2
3

(𝑥𝑥 + 9)3/2�
0

7
=  10

3
. 

2.11. Leontief Input-Output Model. 

Consider a model consisting of n production units and each unit produces only one kind of product. 
Each unit in the model uses the output of these n units as input. Also some part of output of each unit is 
used by other consumers, we shall call those parts as final demand of the unit. The sum of all the outputs 
of a particular unit is known as total output of that unit. Now, we have to determine the new total output 
of a unit if the final demand changes assuming that the resources of the model does not change. Here 
comes the role of Leontief input-output model. We illustrate the process for three production units.  

1. Avaiblable data. Let 1 2 3, ,P P P  be three production units and i jx denote the part of output of the unit Pi 
used as input by the units jP . Let bi denotes the final demand of unit Pi and Xi denotes the total output of 
unit Pi. This data can be represented as:  

 Production 
Unit Receiving unit Final 

demand 
Total 
output 

 P1 P2 P3 

1

2

3

P
P
P

 
11

21

31

x
x
x

 
12

22

32

x
x
x

 
13

23

33

x
x
x

 
1

2

3

b
b
b

 
1

2

3

X
X
X

 

2. Construction of Technology matrix. The ratio i j

j

x
X

 is denoted by i ja and is known as input-output 

coefficients or technical coefficients. For example,  

     11 12 13
11 12 13

1 2 3
, ,x x xa a a

X X X
= = =     
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Then the matrix A of all these input-output coefficients is called Technology matrix or matrix of 
technical coefficients. Thus the technical matrix is  

     
11 12 13

21 22 23

31 32 33

a a a
A a a a

a a a

 
 =  
  

 

3. Simon-Hawkins Conditions.  The conditions for the system to be viable are:  

(i) The elements on the principal diagonal of Leontief matrix are all positive i.e.,  11 221 , 1 ,...a a− −  are all 
positive.  

(ii) The determinant of Leontief matrix i.e., | |I A−  is positive.  

If these two conditions are not satisfied, then there is no solution of the above system. These conditions 
are known as (Simon-Hawkins conditions for viability of system)  

2.11.1. Example. For a two unit economy with production units X and Y, the inter unital demand and 
final demand are as follows :  

   
 
 Production 
Unit 

Receiving unit 
Final 
demand 

Total 
output P1 P2 

1

2

P
P

 30
20

 

 

40
10

 

 

50
30

 120
60

 

(i)   Find the technical coefficients.  

(ii)  Find the matrix of technical coefficients.  

(iii)  Find the Leontief matrix  

(iv)  Verify Simon-Hawkins conditions for viability of the system.  

Solution. The given table is  

            Production 

Unit 
Receiving unit Final 

demand 
Total 
output 

 P1 P2 

P1   

P2 

11

12

30
20

x
x

=
=

 

 

 

21

22

40
10

x
x

=
=

 

 

 

1

2

50
30

b
b

=
=

 

 

 

1

2

120
60

X
X

=
=
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(i) Here n = 2, technical co-efficients are 11 21 12 22, ,a a a a  

Thus    11
11

1

30 1
120 4

xa
X

= = =  

    21
21

1

20 1
120 6

xa
X

= = =  

    12
12

2

40 2
60 3

xa
X

= = =  

    22
22

2

10 1
60 6

xa
X

= = =  

(ii) Matrix of technical coefficients  11 12

21 22

1 2
4 3
1 1
6 6

a a
A

a a

 
  

= =   
   

  

  

(iii) Leontief Matrix  
1 2

1 0 4 3
0 1 1 1

6 6

I A

 
  

− = −   
   

  

= 
3 2
4 3
1 5
6 6

 − 
 
 −  

 

(iv) Elements on principal diagonal of Leontief matrix are 3 5and
4 6

 which are positive . Also, I A−

3 2
374 3 0

1 5 72
6 6

−
= = >

−
 

Hence Simon-Hawkins conditions are verified.  

2.12. Check Your Progress. 

1. Evaluate   (i)   ∫(4𝑥𝑥3 + 3𝑥𝑥2 − 2𝑥𝑥 + 5)𝑑𝑑𝑥𝑥  (ii)  ∫ �√𝑥𝑥 − 1
2
𝑥𝑥 + 2

√𝑥𝑥
� 𝑑𝑑𝑥𝑥 

 (iii)  ∫ �𝑥𝑥
4+1
𝑥𝑥2 �𝑑𝑑𝑥𝑥     (iv)  ∫ �𝑥𝑥 − 1

𝑥𝑥
�

3
𝑑𝑑𝑥𝑥 

  (v)  ∫ �2𝑥𝑥 + 1
2
𝑠𝑠−𝑥𝑥 + 4

𝑥𝑥
− 1

√𝑥𝑥3 �𝑑𝑑𝑥𝑥  (vi)  ∫ 𝑥𝑥
𝑥𝑥−3

𝑑𝑑𝑥𝑥 

(vii)  ∫�𝑠𝑠𝑎𝑎 log 𝑥𝑥 + 𝑠𝑠𝑥𝑥 log 𝑎𝑎�𝑑𝑑𝑥𝑥  (viii)  ∫ 1
√5𝑥𝑥+3−√5𝑥𝑥+2

𝑑𝑑𝑥𝑥 

(ix)  ∫ �𝑠𝑠3𝑥𝑥 − 2𝑠𝑠𝑥𝑥 + 1
𝑥𝑥
� 𝑑𝑑𝑥𝑥   (x)  ∫

�𝑥𝑥3+1�(𝑥𝑥−2)
𝑥𝑥2−𝑥𝑥−2

𝑑𝑑𝑥𝑥 

 (xi)  ∫
(𝑎𝑎𝑥𝑥+𝑏𝑏𝑥𝑥 )2

𝑎𝑎𝑥𝑥𝑏𝑏𝑥𝑥
𝑑𝑑𝑥𝑥    (xii)  ∫ 1

√𝑥𝑥+1+√𝑥𝑥−1
𝑑𝑑𝑥𝑥  

2. Evaluation  (i) ∫ 3𝑥𝑥+5
(3𝑥𝑥2+10𝑥𝑥+2)2/3 𝑑𝑑𝑥𝑥   (ii) ∫�2+log 𝑥𝑥

𝑥𝑥
𝑑𝑑𝑥𝑥 

  (iii) ∫ 𝑠𝑠𝑥𝑥−𝑠𝑠−𝑥𝑥

𝑠𝑠𝑥𝑥+𝑠𝑠−𝑥𝑥
𝑑𝑑𝑥𝑥   (iv)  ∫ 𝑑𝑑𝑥𝑥

𝑥𝑥2−𝑎𝑎2 

(v)  ∫𝑥𝑥(𝑥𝑥2 + 4)5 𝑑𝑑𝑥𝑥  (vi)  ∫ 8𝑥𝑥2

(𝑥𝑥3+2)3 𝑑𝑑𝑥𝑥 

(vii)  ∫ 𝑥𝑥3

(𝑥𝑥2+1)3 𝑑𝑑𝑥𝑥   (viii)  ∫ 𝑥𝑥+2
√𝑥𝑥2+4𝑥𝑥+5

𝑑𝑑𝑥𝑥 
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(ix)  ∫
(𝑥𝑥+1)(𝑥𝑥+log 𝑥𝑥)3

3𝑥𝑥
𝑑𝑑𝑥𝑥  (x)  ∫ 𝑠𝑠𝑥𝑥−1+𝑥𝑥𝑠𝑠−1

𝑠𝑠𝑥𝑥+𝑥𝑥𝑠𝑠
𝑑𝑑𝑥𝑥 

(xi)  ∫ 1
(1+𝑠𝑠𝑥𝑥 )(1+𝑠𝑠−𝑥𝑥 )𝑑𝑑𝑥𝑥  (xii) ∫(𝑥𝑥 + 1)2𝑥𝑥2+2𝑥𝑥 𝑑𝑑𝑥𝑥 

3.  Evaluate  (i) ∫𝑥𝑥2𝑠𝑠3𝑥𝑥 𝑑𝑑𝑥𝑥     (ii) ∫𝑥𝑥𝑛𝑛 log 𝑥𝑥 𝑑𝑑𝑥𝑥 

  (iii) ∫ 𝑥𝑥𝑠𝑠𝑥𝑥

(𝑥𝑥+1)2 𝑑𝑑𝑥𝑥     (iv)  ∫ log 𝑥𝑥 𝑑𝑑𝑥𝑥 

  (v)  ∫√4𝑥𝑥2 − 9𝑑𝑑𝑥𝑥    (vi)  ∫ 𝑑𝑑𝑥𝑥
(𝑥𝑥+1)√𝑥𝑥+2

 

(vii)  ∫ 𝑑𝑑𝑥𝑥
(𝑥𝑥+1)√𝑥𝑥2+𝑥𝑥+1

    (viii) ∫ 𝑑𝑑𝑥𝑥
(𝑥𝑥2−1)√𝑥𝑥2+1

 

(ix)  ∫ 𝑥𝑥 log(1 + 𝑥𝑥)𝑑𝑑𝑥𝑥   (x)  ∫𝑥𝑥3𝑎𝑎𝑥𝑥2𝑑𝑑𝑥𝑥 

4. Evaluate.   (i)  ∫ 𝑥𝑥
(𝑥𝑥−1)(𝑥𝑥−2)

𝑑𝑑𝑥𝑥   (ii)  ∫ 2𝑥𝑥
(𝑥𝑥2+1)(𝑥𝑥2+3)

𝑑𝑑𝑥𝑥 

(iii)  ∫ 3𝑥𝑥+5
𝑥𝑥4−𝑥𝑥3−𝑥𝑥2+1

𝑑𝑑𝑥𝑥    (iv) ∫ 𝑥𝑥2+1
(2𝑥𝑥+1)(𝑥𝑥+1)(𝑥𝑥−1)

𝑑𝑑𝑥𝑥 

(v)  ∫ 26𝑥𝑥+6
8−10𝑥𝑥−3𝑥𝑥2 𝑑𝑑𝑥𝑥    (vi)  ∫ 2𝑥𝑥3−3𝑥𝑥2−9𝑥𝑥+1

2𝑥𝑥2−𝑥𝑥−10
𝑑𝑑𝑥𝑥 

(vii)  ∫ 𝑑𝑑𝑥𝑥
(𝑥𝑥+1)2(𝑥𝑥2+1)

𝑑𝑑𝑥𝑥   (viii)  ∫ 𝑑𝑑𝑥𝑥
(𝑠𝑠𝑥𝑥−1)2 

(ix)  ∫ 𝑥𝑥2+𝑥𝑥+1
(𝑥𝑥−3)3 𝑑𝑑𝑥𝑥    (x)  ∫ 𝑎𝑎𝑥𝑥2+𝑏𝑏𝑥𝑥+𝑠𝑠

(𝑥𝑥−𝑎𝑎)(𝑥𝑥−𝑏𝑏)(𝑥𝑥−𝑠𝑠)
𝑑𝑑𝑥𝑥 

5. Evaluate the following: 

(i)  ∫ (3𝑥𝑥 − 2)24
2 𝑑𝑑𝑥𝑥    (ii)  ∫ 1

𝑥𝑥+2
10

6 𝑑𝑑𝑥𝑥   (iii)  ∫ √2𝑥𝑥 + 311
3 𝑑𝑑𝑥𝑥 

(iv) ∫ √𝑥𝑥
√𝑥𝑥+√2−𝑥𝑥

2
0 𝑑𝑑𝑥𝑥    (v)  ∫ 𝑑𝑑𝑥𝑥

(𝑥𝑥+1)√𝑥𝑥2−1
2

0     (vi)  ∫ 3𝑥𝑥3−4𝑥𝑥2+1
√𝑥𝑥

1
0 𝑑𝑑𝑥𝑥 

6. Evaluate the following : 

(i)  ∫ 𝑥𝑥5

1+𝑥𝑥6
1

0 𝑑𝑑𝑥𝑥    (ii)  ∫ 𝑥𝑥√3𝑥𝑥 − 22
1 𝑑𝑑𝑥𝑥   (iii)  ∫ 6𝑥𝑥2−1

√2𝑥𝑥3−𝑥𝑥−2
4

2 𝑑𝑑𝑥𝑥 

(iv) ∫ (log 𝑥𝑥)2

𝑥𝑥
2

1 𝑑𝑑𝑥𝑥   

7. Evaluate the following : 

(i)  ∫ 𝑥𝑥𝑠𝑠𝑥𝑥1
0 𝑑𝑑𝑥𝑥    (ii)  ∫ 𝑥𝑥𝑙𝑙𝑙𝑙𝑙𝑙 �1 + 𝑥𝑥

2
�1

0 𝑑𝑑𝑥𝑥   (iii)  ∫ 𝑥𝑥2𝑠𝑠𝑥𝑥1
0 𝑑𝑑𝑥𝑥 

(iv) ∫ log 𝑥𝑥
𝑥𝑥2

𝑏𝑏
𝑎𝑎 𝑑𝑑𝑥𝑥   

8. Find the area of the region included between the parabola 𝑦𝑦 =  3
4
𝑥𝑥2 and the line        3𝑥𝑥 − 2𝑦𝑦 +

12 = 0. 
9. Find the area bounded by the curve 𝑦𝑦 =  𝑥𝑥2  and the line 𝑦𝑦 =  𝑥𝑥. 
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10. Make a rough sketch of the graph of the function 𝑦𝑦 =  9 − 𝑥𝑥2, 0 ≤  𝑥𝑥 ≤  3 and   determine the area 

enclosed between the curve and the axis. 
11. Using integration, find the area of the region bounded by the triangle whose vertices are (1, 0), (2, 2) 

and (3,1). 
12. Find the area of the region bounded by 𝑦𝑦 =  −1, 𝑦𝑦 = 2, 𝑥𝑥 = 𝑦𝑦2, 𝑥𝑥 = 0.  
13. Find the area between the parabola 𝑦𝑦2  =  𝑥𝑥 and the line 𝑥𝑥 =  4.  
14. Find the area bounded by the curve 𝑦𝑦 =  𝑥𝑥2 − 4 and the lines 𝑦𝑦 =  0 and 𝑦𝑦 =  5. 
15. Find the area of the region enclosed between the curve 𝑦𝑦 =  𝑥𝑥2 + 1 and the line 𝑦𝑦 =  2𝑥𝑥 + 1. 
16. Find the area bounded by the curve 𝑥𝑥 =  𝑎𝑎𝑡𝑡2, 𝑦𝑦 =  2𝑎𝑎𝑡𝑡 between the ordinates corresponding to 

𝑡𝑡 = 1 and 𝑡𝑡 = 2. 
17. Find the area of the region enclosed by the parabola 𝑦𝑦2  =  4𝑎𝑎𝑥𝑥 and chord 𝑦𝑦 =  𝑚𝑚𝑥𝑥. 

Answers. 

1.  (i) 𝑥𝑥4 + 𝑥𝑥3 − 𝑥𝑥2 + 5𝑥𝑥 + 𝐶𝐶  (ii) 2
3
𝑥𝑥3/2 − 1

4
𝑥𝑥2 + 4√𝑥𝑥 + 𝐶𝐶 

(iii) 𝑥𝑥
3

3
− 1

𝑥𝑥
+ 𝐶𝐶    (iv) 𝑥𝑥

4

4
− 3

2
𝑥𝑥2 + 3 log 𝑥𝑥 +  1

2𝑥𝑥2 + 𝐶𝐶  

(v) 2𝑥𝑥

𝑙𝑙𝑙𝑙𝑙𝑙2
− 1

2
𝑠𝑠−𝑥𝑥 + 4 log 𝑥𝑥 − 3

2
𝑥𝑥2/3 + 𝐶𝐶  (vi) 𝑥𝑥 + log|𝑥𝑥 − 3| + 𝐶𝐶 

(vii) 𝑥𝑥
𝑎𝑎+1

𝑎𝑎+1
+ 𝑎𝑎𝑥𝑥

log 𝑎𝑎
+ 𝐶𝐶    (viii) 2

15
�(5𝑥𝑥 + 3)

3
2 − (5𝑥𝑥 + 2)

3
2� + 𝐶𝐶 

(ix)  𝑠𝑠
3𝑥𝑥

3
− 2𝑠𝑠𝑥𝑥 + log|𝑥𝑥| + 𝐶𝐶   (x) 𝑥𝑥

3

3
− 𝑥𝑥2

2
+ 𝑥𝑥 + 𝐶𝐶 

(xi)  
�𝑎𝑎𝑏𝑏�

𝑥𝑥

log 𝑎𝑎𝑏𝑏
+ 2𝑥𝑥 +

�𝑏𝑏𝑎𝑎�
𝑥𝑥

log 𝑏𝑏𝑎𝑎
+ 𝐶𝐶   (xii)  1

3
(𝑥𝑥 + 1)3/2 − 1

3
(𝑥𝑥 − 1)3/2 + 𝐶𝐶 

2.  (i)  3
2

(3𝑥𝑥2 + 10𝑥𝑥 + 2)
1
3 + 𝐶𝐶  (ii)  2

3
(2 + log 𝑥𝑥)

3
2 + 𝐶𝐶  (iii)  log|𝑠𝑠𝑥𝑥 + 𝑠𝑠−𝑥𝑥 | + 𝐶𝐶 

(iv)  1
2𝑎𝑎
𝑙𝑙𝑙𝑙𝑙𝑙 |𝑥𝑥−𝑎𝑎|

|𝑥𝑥+𝑎𝑎|
+ 𝐶𝐶    (v)  1

12
(𝑥𝑥2 + 4)6   (vi) 4

3(𝑥𝑥2+2)2 

(vii)  − 1
4

2𝑥𝑥2+1
(𝑥𝑥2+1)2    (viii) 1

15
(1 + 𝑥𝑥6)5/2 + 𝐶𝐶  (ix) 1

12
(𝑥𝑥 + log 𝑥𝑥)4 + 𝐶𝐶 

(x)  1
𝑠𝑠

log|𝑠𝑠𝑥𝑥 + 𝑥𝑥𝑠𝑠 | + 𝐶𝐶   (xi) − 1
1+𝑠𝑠𝑥𝑥

+ 𝐶𝐶   (xii)  2
𝑥𝑥2+2𝑥𝑥

2 log 2
+ 𝐶𝐶 

3.  (i) 𝑥𝑥
2𝑠𝑠3𝑥𝑥

3
− 2𝑥𝑥𝑠𝑠3𝑥𝑥

9
+ 2

27
𝑠𝑠3𝑥𝑥    (ii) log 𝑥𝑥  𝑥𝑥

𝑛𝑛+1

𝑛𝑛+1
− 𝑥𝑥𝑛𝑛+1

(𝑛𝑛+1)2  (iii) 1
𝑥𝑥+1

𝑠𝑠𝑥𝑥  

     (iv)  𝑥𝑥(log𝑥𝑥)2 − 2𝑥𝑥𝑙𝑙𝑙𝑙𝑙𝑙 𝑥𝑥 + 2𝑥𝑥     (v)  √4𝑥𝑥2−9
2

− 9
4

log |2𝑥𝑥 + √4𝑥𝑥2 − 9| + 𝐶𝐶 

     (vi)  log �√𝑥𝑥+2−1
√𝑥𝑥+2+1

�+ 𝐶𝐶    (vii)  1 − log � 1
𝑥𝑥+1

− 1
2

+ √𝑥𝑥2+𝑥𝑥+1
𝑥𝑥+1

� + 𝐶𝐶 

     (viii)  − 1
2√2

log �√2𝑥𝑥+√𝑥𝑥2+1
√2𝑥𝑥−√𝑥𝑥2+1

�+ 𝐶𝐶    (ix) 1
2

(𝑥𝑥2 − 1) log(1 + 𝑥𝑥) − 1
4
𝑥𝑥2 + 1

2
𝑥𝑥 + 𝐶𝐶 
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     (x)  𝑥𝑥
2𝑎𝑎𝑥𝑥

2

2 log 𝑎𝑎
− 𝑎𝑎𝑥𝑥

2

2(log 𝑎𝑎)2 + 𝐶𝐶 

4.  (i) – log|𝑥𝑥 − 1| + 2 log |𝑥𝑥 − 2| + 𝐶𝐶   (ii) 1
2

log �𝑥𝑥
2+1

𝑥𝑥2+3
� + 𝐶𝐶 

   (iii) 1
2
𝑙𝑙𝑙𝑙𝑙𝑙 �𝑥𝑥+1

𝑥𝑥−1
� − 4

𝑥𝑥−1
+ 𝐶𝐶   (iv) − 5

6
log|2𝑥𝑥 + 1| + 1

3
log |𝑥𝑥 − 1| + log|𝑥𝑥 + 1| + 𝐶𝐶 

   (v)  − 5
3

log|3𝑥𝑥 − 2| − 7 log|𝑥𝑥 + 4| + 𝐶𝐶  (vi) 𝑥𝑥
2

2
− 𝑥𝑥 + log � 𝑥𝑥+2

2𝑥𝑥−5
� + 𝐶𝐶 

   (vii) 1
2

log |𝑥𝑥 + 1| − 1
2(𝑥𝑥+1)

− 1
4

log |𝑥𝑥2 + 1| + 𝐶𝐶 

  (viii)  log � 𝑠𝑠𝑥𝑥

𝑠𝑠𝑥𝑥−1
� − 1

𝑠𝑠𝑥𝑥−1
+ 𝐶𝐶   (ix)  log |𝑥𝑥 − 3| − 7

𝑥𝑥−3
− 13

2(𝑥𝑥−3)2 + 𝐶𝐶 

  (x)  𝑎𝑎3 + 𝑎𝑎𝑏𝑏 + 𝑠𝑠𝑙𝑙𝑙𝑙𝑙𝑙 |𝑥𝑥 − 𝑎𝑎| + 𝑎𝑎𝑏𝑏2+𝑏𝑏2+𝑠𝑠
(𝑏𝑏−𝑎𝑎)(𝑏𝑏−𝑠𝑠)

log |𝑥𝑥 − 𝑏𝑏| + 𝑠𝑠(𝑎𝑎𝑠𝑠+𝑏𝑏+1)
(𝑠𝑠−𝑎𝑎)(𝑠𝑠−𝑏𝑏)

log |𝑥𝑥 − 𝑠𝑠| + 𝑘𝑘 

5.   (i)  104       (ii)  log 3
2
         (iii) 98

3
       (iv)        (v)  1

√3
   (vi)  − 52

15
 

6.   (i)  1
6

log 2       (ii)  326
135

         (iii) 2(√122 − √12)       (iv)  1
3

(log 2)3   

7.   (i)         (ii)  3
4

+ 2
3

log 2
3
         (iii) 𝑠𝑠−2       (iv)  log 𝑎𝑎+1

log 𝑎𝑎
− log 𝑏𝑏+1

log 𝑏𝑏
   

8.  27    9.  1
6
    10. 18    11. 3

2
 

12.  15
4

    13.  32
3

    14..  76
3

   15. 4
3
 

16.  56𝑎𝑎2

3
   17.  8𝑎𝑎2

3𝑚𝑚2 

2.13. Summary. In this chapter, we derived methods to find the integration of various functions by 
using various methods. Also, Leontiff input-output model is discussed. 
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Matrices 
Structure 

3.1. Introduction. 

3.2.  Matrices. 

3.3. Sum, Difference and Scalar Multiplication of Matrices. 

3.4.  Multiplication of Matrices. 

3.5.  Transpose of a Matrix. 

3.6.  Symmetric and Skew Symmetric Matrices. 

3.7.  Check Your Progress. 

3.8.  Summary. 

3.1. Introduction. In 1857, Arthur Cayley, formulated the general theory of matrices. In the study of 
mathematics matrices have the most important place and found useful in many branches of science, 
engineering, economics and commerce. This chapter contains many important results related to matrices, their 
addition subtraction, multiplication, various types and their realtions.  

3.1.1. Objective. The objective of these contents is to provide some important results to the reader like: 

(i) Matrices. 

(ii) Various types of matrices. 

(iii) Algebra of matrices. 

3.1.2. Keywords. Matrix, Comparable Matrices, Symmetric Matrix, Non-Symmetric Matrix. 
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3.2. Matrices.  

3.2.1. Matrix. A rectangular representation of numbers (data) or functions is known as a matrix. A 
matrix is always represented by capital letters A, B, C, … etc. 

For example 1 1 6
2 0 3

A  
=  
 

 is a matrix. 

In a matrix, horizontal lines are called rows and vertical lines are called columns. For example, 

Columns

1 1 6
Rows

2 0 3
A

→ 
=   → 
↓ ↓ ↓


  

A matrix may have any number of rows and columns. 
3.2.2. Order of matrix. By stating that A is a matrix of order m x n, we mean that the matrix A is 
having m rows and n columns. 

Generally, a matrix is represented as 
xij m n

A a =   , which is a matrix of order m x n, having m rows and n 

columns. ija ’s are known as elements of the matrix A. In particular ija  is the jth entry in the ith row. 

3.2.3. Types of Matrices.  

Here we are discussing some useful types of matrices: 

3.2.4. Square matrix. A matrix of order m × n is called a square matrix if m = n, that is, if the number of 
rows is equal to number of columns 

For example. 
1 1 8
0 0 0
2 1 5

A
 
 =  
  

 is a square matrix of order 3.  

The elements 11 22, , ...a a  are called the diagonal elements of matrix A . Thus, those aij for which i = j are 
called diagonal elements. Rest of the elements are called the non-diagonal elements of square matrix A, 
that is, those aij for which i ≠ j. 
3.2.5. Row matrix. A matrix having single row and any number of columns is called a row matrix. For 
example, [1 0 4   7   5   6]A =  is a row matrix of order 1 × 6.  
3.2.6. Column matrix. A matrix having single column and any number of rows is called column matrix.

 For example, 
1
2
1

A
 
 =  
  

 is a column matrix of order 3 × 1. 

3.2.7. Zero or null matrix. A matrix is said to be a zero or null matrix if all its elements are zero. 

Usually it is denoted by O. For example, 0 0
0 0

A  
=  
 

 is a zero matrix. 

3.2.8. Diagonal matrix. A square matrix in which all non-diagonal elements are zero is called a 
diagonal matrix. So, i j m n

A a
×

 =    is a diagonal matrix if aij=0 for i ≠ j. 
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For example, 
3 0 0
0 4 0
0 0 7

A
 
 =  
  

 is a diagonal matrix of order 3 × 3 

It should be noted that the diagonal elements in a diagonal matrix may or may not be zero. Further, a 
diagonal matrix of order n can be denoted as 11 22.[ .   .   .   ]nnA diag a a a= . 
3.2.9. Scalar matrix. A diagonal matrix in which all its diagonal elements are equal is called a scalar 

matrix. For example, A = 
2 0 0
0 2 0
0 0 2

 
 
 
  

 is a scalar matrix of order 3 × 3. Thus, a diagonal matrix of order n 

can be denoted as .[ .   .   .   ]A diag a a a= . 

Note. All square zero matrices are always diagonal as well as scalar matrix.  

3.2.10. Unit matrix or Identity matrix. A scalar matrix with all entries ‘1’ is called an identity matrix. 
Usually a unit matrix is denotes by In where n represents order of matrix. 

For example, 2 3

1 0 0
1 0

, 0 1 0
0 1

0 0 1
I I

 
   = =       

. 

3.2.11. Triangular Matrices. 
(i) Upper triangular matrix. A matrix in which all elements below the principal diagonal are zero is 

called an upper triangular matrix. For example, 
1 0 4
0 2 7
0 0 4

A
 
 =  
  

 is an upper triangular matrix of order 3 × 3. 

(ii) Lower triangular matrix. A matrix in which all elements above the principal diagonal are zero is 

called a lower triangular matrix. For example, 
1 0 0
0 6 0
4 2 7

A
 
 =  
  

 is a lower triangular matrix of order 3 × 3. 

Remark. Diagonal matrices are upper triangular as well as lower triangular matrices. 

3.2.12. Comparable matrices. Two matrices A and B are comparable if their orders are same, that is, if 
A be a matrix of order m × n and B be a matrix of order p × q then A and B are comparable if m = p and 
n = q  

3.2.13. Equal matrices. Two matrices are equal if they are of same order and having same elements in 

the corresponding positions. For example, if 1 4
0 6

a b
c d
   

=   
   

 then a = 1, b = 4, c = 0, d = 6. 

3.2.14. Example. Construct a 2 × 3 matrix [ ]ijA a=  whose element aij are given by   

2( 2 )
3ij

i ja +
=  

Solution. Let  11 12 13

21 22 23

    
    

a a a
A

a a a
 

=  
 

. 
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Given that  
2( 2 )

3i j
i ja +

=  

Then, 
2

11
[(1) 2(1)] 3

3
a +

= = , 
2

12
[(1) 2(2)] 25

3 3
a +

= = ,  
2

13
[(1) 2(3)] 49

3 3
a +

= =  

2

21
[(2) 2(1)] 16

3 3
a +

= = , 
2

22
[(2) 2(2)] 12

3
a +

= = ,  
2

23
[(2) 2(3)] 64

3 3
a +

= =  

Therefore the required matrix is A
25 493     
3 3

16 6412    
3 3

 
 

=  
 
  

. 

3.2.15. Exercise. If 
2 1 5

2 3 0 13
x y x z
x y z w
− + −  

=   − +   
 then find x, y, z and w.  

Solution. Given that 2 1 5
2 3 0 13
x y x z
x y z w
− + −   

=   − +   
 

Comparing the corresponding elements, we obtain 
    1x y− = −       

    2 5x z+ =       
    2 0x y− =      

    3 13z w+ =       
Subtracting first and third equation we can obtain 

 x = 1 

Using x = 1 in first equation, we get   

    y = 2 

Then from second equation, we get 

    2 + z = 5  ⇒  z = 3  

Then from fourth equation, we get 

9 13w+ =   ⇒  w = 4  

 Hence 1, 2, 3, 4x y z w= = = =  

3.2.16. Exercise. 

1. Construct a 3×3 matrix A = ija    whose element aij is given by 3
2
i j− + + . 

2. Give an example of a matrix which is diagonal but not scalar. 
3. For what values of a and b the following matrices are equal 

2

2

2 1 3 3 2
5 5 5 6

a b a bA B
b b

+   + +
= =   

− −   
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4. Find the values of a and b if 

(i) 5 7 5
6 6 4
a

b
   

=   
   

   (ii) 8 6 8
6 6 8

a b
ab

+   
=   

   
 

5. For what values of a and b are the matrices 
2

2

2 1 23 and 
0 6 0 5

a ba bA B
b b

+   +
= =   

− −   
 are equal?  

Answer. 

2. 
4 0 0
0 2 0
0 0 1

A
 
 =  
 − 

  

3. 2 , 2a b= =   

4. (i) a = 7 , b = 4   (ii) a = 2 , b = 4, or a = 4 , b = 2,  

5. a = 2 , b = 2 

3.3. Sum, Difference and Scalar Multiplication of Matrices. 

3.3.1. Addition of Matrices. 

If A and B are two matrices of same order, then their sum A+B is obtained by adding the corresponding 
elements of A and B. Clearly order of A + B is similar to that of A and B. 

For example, let 
2 3 2 3

1 1 0 3 1 4
,  

2 2 3 2 5 3
A B

× ×

   
= =   
   

. Then, 
2 3

4 2 4
4 7 6

A B
×

 
+ =  

 
. 

Note. Addition of two or more matrices is defined only when they are comparable otherwise sum of two 
matrices does not exist. 

3.3.2. Properties of matrix addition 

If A and B are two matrices of same order then following properties holds: 

(i) Matrix addition is commutative that is, , A B B A+ = +  
(ii) Matrix addition is associative that is, , ( ) ( )A B C A B C+ + = + +  

3.3.3. Difference of matrices.  

For two matrices A and B of the same order, then their difference A - B is obtained by subtracting the 
elements of B from the corresponding elements of A. Clearly order of A - B is similar to that of A and B. 

For example, let 
2 3 2 3

1 1 0 3 1 4
,  

2 2 3 2 5 3
A B

× ×

   
= =   
   

. Then, 
2 3

2 0 4
0 3 0

A B
×

− − 
− =  − 

. 

3.3.4. Scalar Multiplication and its Properties. 

If A is any matrix of order m × n and k is any scalar then kA is obtained by multiplying every element of 
A with k and known as scalar multiple of A by k. 

For example, let 
2 3

1 1 0
,  3

2 2 3
A k

×

 
= = 
 

. Then, 
2 3

3 3 0
6 6 9

kA
×

 
=  
 

. 
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3.3.5. Properties of Scalar Multiplication.  

If A and B are two matrices of same order and k is any scalar then following properties holds. 

(i)  ( )k A B k A k B+ = +     (ii) ( ) ( ) ( )k l A k lA l kA= =  
(iii)  ( )k l A k A l A+ = +  

3.3.6. Example. If A = 1 5 6
2 4 4
 
 
 

 and B = 0 1 4
2 3 2

 
 − − 

 , then find A + B and A−B. 

Solution. Since the order of A and B are same, therefore addition and subtraction are possible. Then by 
definition 

  1 0 5 1 6 4 1 6 10
2 2 4 3 4 2 0 7 2

A B
+ + +   

+ = =   − + −   
  

and 1 0 5 1 6 4 1 4 2
2 2 4 3 4 2 4 1 6

A B
− − −   

− = =   + − +   
. 

3.3.7. Example. If A = 1 3 2
2 0 2

− 
 
 

 and B = 2 1 1
1 0 1

− − 
 − 

, then find a matrix C such that A B C+ +  is 

a zero matrix. 

Solution. Given that A + B + C = 0  

  ⇒  C = −A−B = − (A + B). 

Here,   A + B = 1 3 2
2 0 2

− 
 
 

 + 2 1 1
1 0 1

− − 
 − 

 = 3 4 1
3 0 1

− 
 
 

.  

Therefore, C = (−1) (B + A) = 3 4 1
3 0 1
− − 
 − − 

. 

3.3.8. Example. Find x and y, if 
3 4 7 65

2 1 2 15 147 3
x

y
−     

+ =     −     
. 

Solution. Given that  5 3 4 7 6
2

7 3 1 2 15 14
x

y
−     

+ =     −     
 

which implies  2 10 3 4 7 6
14 2 6 1 2 15 14

x
y

−     
+ =     −     

 

which implies   2 3 6 7 6
15 2 4 15 14
x

y
+   

=   −   
 

Then, we have 

   2x + 3 = 7 and 2y – 4 = 14 

which implies 2x = 4  and 2y = 18  

or   x = 2  and  y = 9 

So x = 2, y = 5.   
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3.3.9. Exercise. 

1. If 2 3
4 6

A  
=  
 

 then find 3A and − 2A. 

2. Compute A + B if defined for the following  

 (i) 
1 4 7 2 3 1

8 5 1 , 8 0 5
2 8 5 3 2 4

A B
−   

   = =   
      

 

  (ii) 1 2 3 2 1 3
,

4 5 6 0 5 0
A B

− −   
= =   −   

 

3. If 
2 71 5
1 86 7 X

−−   
+ =   

  
, then find X. 

4. If A = 
1 2 3
5 0 2
1 1 1

− 
 
 
 − 

, B =
3 1 2
4 2 5
2 0 3

− 
 
 
  

. Find a matrix C such that A + 2C = B. 

5. If 2X + 3Y = 2 3
4 0
 
 
 

 and 3X + 2Y = 2 2
1 5
− 
 − 

. Find X and Y. 

6. Find X and Y if 2X+ Y = 4 4 7 3 2 1
and 27 3 4 1 1 2X Y

−   
− =   −   

. 

7. If 2 1 3 0 5 1
and

4 2 5 2 3 1
A B   
= =   
   

 then find C if A + B + C is zero matrix. 

Answer. 

1. (i) 6 9
12 18
 
 
 

  (ii) 4 6
8 12

− − 
 − − 

 

2. (i) 
1 7 8

16 5 6
5 10 9

 
 
 
  

   (ii) 1 3 0
4 0 6
 
 
 

  

3. 1 2
5 1

X
− 

=  − 
 

4. C = 
1 3 2 5 2
1 2 1 3 2

1 2 1 2 1

− 
 − 
  

. 

5. X = − 
 − − 

2 0
1 3

, Y =  
 
 

2 1
2 2

. 

6. 1 2 3
3 1 2

X  
=  
 

 and 2 0 1
1 1 0

Y  
=  
 

  

7. 2 6 4
6 5 6

− − − 
 − − − 
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3.4. Multiplication of Matrices. 

Let 
11 1

1

n

m mn m n

a a
A

a a
×

 
 =  
 
 



  



 and 
11 1

1

p

n np n p

b b
b

b b
×

 
 

=  
 
 



  



 be two matrices of orders m × n and n × p respectively. 

Then their product AB is a matrix C of order m × p and can be obtained as  

cij = ai1b1j + ai2b2j + ……+ ainbnj  for 1 ≤ i ≤ m, 1 ≤ j ≤ p 

where 
11 1

1

p

m mp m p

c c
C

c c
×

 
 

=  
 
 



  



. For an example, let A = 11 12 11 12 13

21 22 21 22 23
and

a a b b b
B

a a b b b
   

=   
   

. 

Then AB can be obtained as follows: 

11 12
11 12 13 11 11 12 21 11 12 12 22 11 13 12 23

21 11 22 21 21 12 22 22 21 13 22 2321 22 23
21 22

    
 

a a
b b b a b a b a b a b a b a b

AB
a b a b a b a b a b a bb b ba a

 
 ↓ ↓ + + +  = → → =     + + +↓ ↓      

. 

Remark. If the number of columns of A are not equal to number of rows of B then the product AB is not 
defined. For the above example, the product BA is not possible as number of columns in B (3) is not 
equal to number of rows in A (2).  

3.4.1. Properties of matrix multiplication. 

1. Matrix multiplication is not commutative in general, that is, AB may or may not equal to BA. 

2. Matrix multiplication is associative, that is, if A, B and C are matrices of order m × n, n × p and 
p × q respectively, then (AB)C = A(BC). 

3. Matrix multiplication is distributive over addition, that is, if A, B and C are matrices of order m × 
n, n × p and n × p respectively, then A(B+C) = AB+AC. 

4. If A and B are n-rowed matrices then 

i) 2 2 2( )A B A B AB BA+ = + + +    

ii) 2 2 2( )A B A B AB BA− = + − −  

iii) 2 2( )( )A B A B A AB BA B+ − = − + −  

3.4.2. Matrices and Polynomials. 

If f(x) is a polynomial of degree n 

f(x) = a0 xn + a1 xn –1 +...….+ an –1 x +an. 

and A is a square matrix of order m, then f(A) is defined as: 

f(A) =  a0 An +a1An –1 +...….+ an –1 A +an Im  
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3.4.3. Example. If A = 1 2 3
4 5 6
 
 
 

 and B =
2 5 3
3 6 4
4 7 5

 
 
 
  

, then Compute AB. 

Solution. By definition of product of two matrices 

 AB =  
 
 

1 2 3
4 5 6

 
 
 
  

2 5 3
3 6 4
4 7 5

 = + + + + + + 
 + + + + + + 

2 6 12 5 12 21 3 8 15
8 15 24 20 30 42 12 20 30

 =  
 
 

20 38 26
47 92 62

. 

3.4.4. Example. If 3 4 3
1 2 11

x
y

−     
=     

     
, then find x and y. 

Solution. Given that 3 4 3
1 2 11

x
y

−     
=     

     
. Using the definition of product of two matrices 

   3 4
2

x y
x y
− 

 + 
= 3

11
 
 
 

 

On comparing the corresponding elements, we get 
    3x−4y = 3 
    x+2y = 11 
Solving these two, we get x = 5 and y = 3. 

3.4.5. Example. If 
2 1
1 0
3 4

− 
 
 
 − 

A = 
1 8 10

1 2 5
9 22 15

− − − 
 − − 
  

 then find A. 

Solution. Since the product matrix is a 3×3 matrix and the first matrix in product is of order 3×2. 

Therefore, A must be a 2×3 matrix. So let A = a b c
d e f
 
 
 

. Then, the given matrix equation becomes 

   
− 

 
 
 − 

2 1
1 0
3 4

a b c
d e f
 
 
 

 = 
− − − 
 − − 
  

1 8 10
1 2 5
9 22 15

 

which implies  
2 2 2

3 4 3 4 3 4

a d b e c f
a b c

a d b e c f

− − − 
 
 
 − + − + − + 

 = 
− − − 
 − − 
  

1 8 10
1 2 5
9 22 15

 

Comparing corresponding elements, we get 
   2a−d = −1, a = 1, −3a + 4d = 9,  
   2b−e = −8, b = −  2, −3b + 4e = 22,  
   2c− f = 10, c = −5, −3c + 4f = 15. 
Solving these equations, we get 
   a = 1, d = 3; b = −2, e = 4; c = −5, f = 0. 

Hence,  A = − − 
 
 

1 2 5
3 4 0

. 
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3.4.6. Example. If A = 3 1
1 2

 
 − 

 , show that A2 −5A+7I = 0 and hence evaluate A4. 

Solution. Here, A2 = A.A = 3 1
1 2

 
 − 

. 3 1
1 2

 
 − 

 = 3.3 1.( 1) 3.1 1.2
1.3 2.( 1) 1.1 2.2

+ − + 
 − + − − + 

 = 8 5
5 3

 
 − 

. 

Thus,  A2 −5A+7I = 8 5
5 3

 
 − 

−5 3 1
1 2

 
 − 

+7 1 0
0 1
 
 
 

  = 8 5
5 3

 
 − 

−  
 − 

15 5
5 10

+  
 
 

7 0
0 7

 =  
 
 

0 0
0 0

 

Hence  A2 −5A+7I = O 

Now, A2 = 5A−7I ⇒  A4 = A2.A2 = (5A−7I). (5A −7I)  = 25A2−35A −35A+49I 

           = 25(5A−7I)−70A+49I = 125A −175I−70A+49I 

           = 55A −126I 

      = 55 3 1
1 2

 
 − 

−126  
 
 

1 0
0 1

 

           = 165 55
55 110

 
 − 

− 126 0
0 126

 
 
 

 

      =  
 − − 

39 55
55 16

.  

3.4.7. Example. A trust fund has Rs. 30,000 that must be invested in two different types of bonds. The 
first bond pays 5% interest per year and the second bond pays 7% interest per year. Using matrix 
multiplication, determine how to divide Rs. 30,000 among the two types of bonds if the trust fund must 
obtain an annual total interest of Rs. 1800. 

Solution. Total fund is Rs. 30,000. Let investment made in first bond is Rs. x, then investment in the 
second bond Rs. 30,000 − x. As per given data 

Annual interest on first bond = 5% = 5
100

 per rupee. 

Annual interest on second bond = 7% = 7
100

 per rupee. 

Let A be the investment matrix, then A = [ 30,000 ]x x− , and B be the annual interest per rupee 

matrix, thus B = 5 /100
7 /100
 
 
 

. 

Therefore, total annual interest can be obtained by AB = [ 30,000 ]x x−
5 /100
7 /100
 
 
 

 

           = 5 7(30000 )
100 100

x x− +  
 

      

    = 5 210000 7
100

x x+ − 
  

= 210000 2
100

x− 
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Therefore, total annual interest is 210000 2
100

x− . 

Now for a total annual interest of Rs. 1800 , we must have 

 210000 2
100

x− =1800 

which implies,    210000 2 180000x− =  

which implies,    2 30000x =  

which implies,   15000x =  

Hence the investments in both bonds are Rs. 15000. 

3.4.8. Exercise. 

1. Find the order of A×B if the order of A and B are  

(i) 2×3 and 3×2 (ii) 5×4 and 4×3. 

2. If A = 0 1  0
and

2 0 1
a

B
b

−   
=   −   

 and (A + B)2 = A2 + B2. Find a and b.  

3. Give examples of matrices  

(i) A and B such that AB = O, but A ≠ 0 , B ≠ 0  

(ii) A, B, C, such that AB = AC, but B ≠ C ; A ≠ 0  

4. If A = [1  2  3], B=
2 1 1 2
0 3 and 3 2
5 4 1 0

C
   
   =   
      

. Verify that A(B + C) = AB + AC.  

5. Solve the matrix equation   
=  − −   

1 0
[ 1] 02 3 5

x
x .  

6. If A = 1 0
1 7

 
 − 

, then find k so that A2 = 8A + kI2.  

7. A bookseller furnished a school with 10 dozen books for class X, 8 dozen books for class XI and 5 
dozen books for class XII. If their prices are Rs. 83, Rs. 34.50 and Rs. 45 respectively per book, find 
the total amount of the bill furnished by the bookseller. 

8. There are three families. Family A consists of 2 men, 3 women and 1 child. Family B has 2 men, 1 
woman and 3 children. Family C has 4 men, 2 women and 6 children. Daily income of a man and 
woman are Rs. 20 and Rs. 15.50 respectively and children have no income. Using matrix 
multiplication, calculate the daily income of each family. 

Answers. 

1. (i) 2 × 2 (ii) 5×3. 5. x = 5 or x = -3. 6. k = − 7. 7. Rs. 15972  

8. Rs. 86.50, Rs. 55.50, Rs. 111 
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3.5. Transpose of a Matrix. 

Let A be any m × n matrix, then any n × m matrix obtained from A by changing its rows into columns or 
columns into rows is called the transpose of A and is denoted by AT or A′. 

For example, if
11 21

11 12 13
12 22

21 22 23 2 3
13 23 3 2

   
then

   

a a
a a a

A A a a
a a a

a a×
×

 
   ′= =      

 

. 

3.5.1. Properties of Transpose. 

1. ( )A B A B′ ′ ′+ = + ( A and B being same order) 
2. ( )A A′ ′ =  
3. ( )k A k A′ ′=  (where k is any scalar) 
4. ( )AB B A′ ′ ′=  (A and B being conformable for product). 

3.6. Symmetric and Skew Symmetric Matrices. 

A square matrix i j n n
A a

×
 =    is called a symmetric matrix if A′= A or aij = aji for all i and j. 

For example, let 
1 2 3 1 2 3
2 0 6 then ' 2 0 6
3 6 8 3 6 8

A A
   
   = =   
      

, then ='A A  and hence A is a symmetric matrix. 

A square matrix i j n n
A a

×
 =    is called a skew- symmetric matrix if A′= − A or  aij = − aji for all i and j. 

For example, let 
0 1 2 0 1   2
1 0  4 then ' 1 0 4

2 4 0 2 4   0
A A A

− −   
   = − = − = −   
   − −   

. Hence A is skew-symmetric matrix. 

3.6.1. Theorem. The diagonal elements of a skew symmetric matrix are all zero. 

Proof. Let A =   i ja  be a skew symmetric matrix. Then by definition of skew symmetric matrix, aij = −

aji
 for all i, j. However, for diagonal elements i = j, 

   ⇒     aii = −aii for all values of i  

   ⇒     2aii = 0 for all i .  

   ⇒    aii = 0 for all i  

Hence diagonal elements of a skew symmetric matrix are all zero. 

3.6.2. Theorem. If A is any square matrix , then   

1. ( )1 '
2

A A+ is symmetric matrix. 

2. ( )1 '
2

A A− is skew symmetric. 

3. AA′ and A′A are symmetric matrix. 
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Proof. 

1.  Let K = ( )1 A+ A '
2

 , then as  ( ) '  ' 'A B A B+ = +  and ( ') 'A A= , therefore 

 K’ = ( )1 ' '
2

A A+  = 1
2

( )' ' 'A A+    = 1
2
( )A '+ A   = 1

2
( )A+ A '  = K 

So, K = 1
2
( )′A+ A  is a symmetric matrix. 

2. Let K = 1
2
( )A A '− , then  

   K′ = ( )
'1 A A '

2
 −  

 = 1
2

( )' ' 'A A−    = 1
2
( )A ' A−  = − 1

2
( )A A '−  = −K 

Hence, K = 1
2
( )A A '−  is a skew symmetric matrix. 

3. Let K A A′= , then as ( )A B B A′ ′ ′= , so 

 ( ) ( )K A A A A′ ′′ ′ ′= =  = A A K′ = . 

Hence K is symmetric.   

Similarly A′A is symmetric. 

3.6.3. Theorem. A matrix which is both symmetric and skew symmetric, must be a null matrix. 

Proof. Let A be a matrix which is both symmetric and skew symmetric. Then  

A′= A  and  A′= -A 

Subtracting these two, we obtain 

   2A = O 

which implies that A is a zero matrix 

3.6.4. Theorem. Let A and B be symmetric matrices of same order, then  

1. A+B is a symmetric matrix. 

2. AB +BA is a symmetric matrix. 

3. AB−BA is a skew-symmetric matrix. 

Proof. 

Since A and B are symmetric matrices. So A′ = A and B′ = B. Then, we have  

1.   (A + B)′ = A′ + B′ = A + B  

Hence A + B is symmetric. 

2.   ( ) 'AB BA+  = (AB)′ + (BA)′ = B ′A′ + A′B′ = BA + AB = AB + BA.  

Hence AB + BA is symmetric matrix. 
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3.  (AB − BA)′ = (AB)′ − (BA)′ = B′A′ −  A′B′ = BA−AB = − (AB−BA) 

Hence AB − BA is skew symmetric matrix. 

3.6.5. Theorem. Every square matrix can be uniquely expressed as the sum of a symmetric and 
skew symmetric matrix. 

Proof. Let A be a square matrix , then we can write 

   A = 1
2

(A+A) = 1
2

(A+ 'A + A−  'A )  = 1
2
( )'A A+ + 1

2
( )'A A−  = P Q+ , say 

where P = 1
2
( )'A A+  and Q = 1

2
( )'A A− . As proved earlier P is a symmetric matrix and Q is a skew 

symmetric matrix.  

To prove the uniqueness. If possible, assume that 

A = B + C     (1) 

where R is symmetric and S is skew symmetric. 

Then,   ( )' ' ' 'A B C B C B C= + = + = −    (2) 

Adding (1) and (2),  

   ' 2A A B+ =   ⇒   B = ( )1 '
2

A A+  = P. 

Subtracting (2) from (1) ,  

   ' 2A A C+ =  ⇒ C = ( )1 '
2

A A−  = Q . 

Hence A is uniquely expressed as a sum of symmetric and skew symmetric matrix. 

3.6.6. Example. Find the transpose of matrix 
3 4 7
1 2 5
3 4 5

A
 
 =  
 − 

.  

Solution. By definition, transpose of A 
3 1 3

' 4 2 4
7 5 5

A
− 

 = =  
  

. 

3.6.7. Example. If 2 3 1 0 1
,4 1 2 1 3A B

−   
= =   
   

, then verify that ( ) ' ' 'AB B A= . 

Solution. Given that 2 3 1 0 1
,

4 1 2 1 3
A B

−   
= =   
   

 

Therefore, 2 3 1 0 1 8 3 7
4 1 2 1 3 6 1 1

AB
−     

= =     −     
. Thus, 
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8 6

( ) ' 3 1
7 1

AB
 
 =  
 − 

  

Also,  1 0 1 2 3
2 1 3 4 1

B A
′ ′−   ′ ′ =    

   
 = 

1 2 8 6
2 4

0 1 3 1
3 1

1 3 7 1

   
    =        − −   

.  

So, we observed that 

   ( ) ' ' 'AB B A=   

3.6.8. Example. Express matrix A=
10 7 9
18 4 10
3 1 7

A
 
 = − 
  

 as a sum of symmetric and skew symmetric 

matrices. 

Solution. We know that A = ( )1 '
2

A A+ + ( )1 '
2

A A− , where ( )1 '
2

A A+  is symmetric and ( )1 '
2

A A−  is skew 

symmetric. 

Now , 
10 7 9 10 18 3 20 25 12

' 18 4 10 7 4 1 25 8 9
3 1 7 9 10 7 12 9 14

A A
     
     + = − + = −     
     − −     

 

and 
10 7 9 10 18 3 0 11 6

' 18 4 10 7 4 1 11 0 11
3 1 7 9 10 7 6 11 0

A A
−     

     − = − − = −     
     − −     

.  

Now   ( )

2510 6
2

1 25 9' 4
2 2 2

96 7
2

A A

 
 
 
 + = − 
 
 −
  

 which is symmetric.  

and  ( )

110 3
2

1 11 11' 0
2 2 2

113 0
2

A A

 − 
 
 − = − 
 
 −
  

 which is a skew symmetric matrix. 
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Thus  A = 

25 1110 6 0 3
2 2

25 9 11 114 0
2 2 2 2

9 116 7 3 0
2 2

A

   −   
   
   = − + −   
   
   − −
      

. 

3.6.9. Exercise. 

1. If A = 
1 2 1 4 5 3

and
5 0 6 2 5 3

B
− − −   

=   
   

 verify that ( ) ' ' '.A B A B+ = +  

2. Find the transpose of following matrices  

(i) 5 2 0
1 4 7

A  
=  
 

    (ii) 
1 11 9
2 7 4
5 6 7

A
 
 =  
  

 

3. Find values of x, y, z for the matrix 
0 2

if '
y z

A x y z A A I
x y z

 
 = − = 
 − 

. 

4. Express the following matrices as the sum of symmetric and skew symmetric matrix.  

  (i) 
3 1 4
4 1 3
0 6 6

 
 
 
  

  (ii) 
4 3 7
6 5 8
1 2 6

 
 − 
  

 (iii) 
1 2 4
6 8 1
3 5 7

 
 
 
  

  (iv) 
4 2 1
3 5 7
1 2 1

− 
 
 
 − 

 

3.7. Check Your Progress. 
4. Give an example of a matrix which is row matrix as well as column matrix. 

5. Find a matrix X such that 2A + B + X = 0 where 1 2
3 4

A
− 

=  
 

 ; 3 2
1 5

B
− 

=  
 

. 

6. If 2 8
5 3

A
− 

=  − 
, then show that 'A A+  is symmetric and 'A A−  is skew symmetric. 

Answers. 

1. Any square matrix of order 1 is a matrix which is both row matrix as well as column matrix. 

2. 1 2
7 13
− − 
 − − 

. 

3.8. Summary. In this chapter, we discussed about Matrices, its various types, when we can add or 
subtract or multiply two matrices. In all cases the most important aspect is the order of the given 
matrices. Further, it was observed that ant square matrix can be expressed as sum of a symmetric and a 
skew-symmetric matrix. 
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Determinants 
Structure 

4.1. Introduction. 

4.2. Determinants. 

4.3. Properties of Determinants. 

4.4. Adjoint of a Matrix. 

4.5. Inverse of a Matrix. 

4.6. Inverse of a Matrix by using Elementary Operations. 

4.7. Solution of Simultaneous Linear Equations. 

4.8. Check Your Progress. 

4.9. Summary. 

4.1. Introduction. In this chapter, we shall learn to evaluate the determinant of a square matrix and then 
with the help of this we will solve some system of linear equations having two or three variables.  

4.1.1. Objective. The objective of these contents is to provide some important results to the reader like: 

(i) Determinants. 
(ii) Inverse of a matrix. 
(iii) Applying row and column operations wherever required. 
(iv) Solving system linear equations. 

4.1.2. Keywords. Matrix, Determinant, Inverse of a Matrix, Adjoint of a matrix. 
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4.2. Determinants.  

Let A = 
11 12 1

21 22 2

1 2

...

...
... ... ... ...

...

n

n

n n nn

a a a
a a a

a a a

 
 
 
 
 
 

 be a square matrix of order n. Then a unique number can be associated to A, 

known as its determinant. The determinant of A can be denoted by:  

detA  or  |A|  or  |aij|  or  
11 12 1

21 22 2

1 2

...

...
... ... ... ...

...

n

n

n n nn

a a a
a a a

a a a

. 

1. If ( )11 1x1A a= , then the determinant of A is defined as 11| |A a= . 

2. If 11 12

21 22 2x2

a a
A

a a
 

=  
 

, then determinant of A is defined as 
11 12

11 22 12 21

21 22

           
| |     

          

a a
A a a a a

a a
= = −  . 

3. If 
11 12 13

21 22 23

31 32 33

a a a
A a a a

a a a

 
 =  
  

, then determinant of A is defined as  

11 12 13
22 23 21 23 21 22

21 22 23 11 12 13
32 33 31 33 31 32

31 32 33

| |
a a a

a a a a a a
A a a a a a a

a a a a a a
a a a

= = − + . 

4. If 

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

    
    
    

          

a a a a
a a a a

A
a a a a
a a a a

 
 
 =
 
 
 

, then determinant of A is defined as  

11 12 13 14
22 23 24 21 23 24 21 22 24 21 22 23

21 22 23 24
11 32 33 34 12 31 33 34 13 31 32 34 14 31 32 33

31 32 33 34
42 43 44 41 43 44 41 42 44 41 42 43

41 42 43 44

    
    

| |
    

          

a a a a
a a a a a a a a a a a a

a a a a
A a a a a a a a a a a a a a a a a

a a a a
a a a a a a a a a a a a

a a a a

= = − + − . 

For matrices of higher order similar procedure can be adopted.  

4.2.1. Singular and Non-singular Matrices:  

Any square matrix A is said to be singular if |A| = 0 and non-singular if |A| ≠ 0.  

4.2.2. Minors and Cofactors. 

Let 
11 12 1

21 22 2

1 2

...

...
... ... ... ...

...

n

n

n n nn

a a a
a a a

A

a a a

 
 
 =
 
 
 

 be any matrix, then minor of an element i ja , denoted by i jM  is the 

determinant of elements of A obtained by removing ith row and jth column of A, keeping the order of 
rest rows and columns unchanged. 
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Thus, 

11 12 1, 1 1, 1 1

21 22 2, 1 2, 1 2

1, 1 1,1,1 1,2

1,1 1,2

...                  ...
 ...                  ...
 ...      ...          ...            ...... ...
 ...         

... ...

j j n

j j n

i j i ji iij

i i

a a a a a
a a a a a

a aa aM
a a

− +

− +

− − − +− −

+ +

= 1 1,

1, 1 1, 1 1,

1 2 , 1 , 1

...
     ...

 ...              ...
... ...      ...          ...            ...

 ...                  ...

i n

i j i j i n

n n n j n j nn

a
a a a

a a a a a

−

+ − + + +

− +

. 

The cofactor of i ja , denoted by i jA , is defined to be ( 1)i j
i jM+− . 

For example, let 11 12

21 22

a a
A

a a
 

=  
 

 be a square matrix of order 2. Then, minors are obtained as 

11 11 22Minor ofM a a= = , 12 12 21Minor ofM a a= =  

21 21 12Minor ofM a a= = , 22 22 11Minor ofM a a= =  

 and cofactors are obtained by 
1 1

11 11 11 22Cofactor of ( 1) .A a M a+= = − = , 

1 2
12 12 12 21Cofactor of ( 1) .A a M a+= = − =− , 

2 1
21 21 21 12Cofactor of ( 1) .A a M a+= = − = − , 

2 2
22 22 22 11Cofactor of ( 1) .A a M a+= = − = . 

Let 
11 12 13

21 22 23

31 32 33

a a a
A a a a

a a a

 
 =  
  

 be a square matrix of order 3. Then,  

22 23
11 11

32 33
Minor of

a a
M a

a a
= = 22 33 23 32a a a a= −  

21 23
12 12

31 33
Minor of

a a
M a

a a
= = 21 33 23 31a a a a= −  

 21 22
13 13

31 32
Minor of

a a
M a

a a
= = 21 32 22 31a a a a= − . 

Minors for remaining elements can be obtained in the similar pattern. Further, 
1 1

11 11 11 11Cofactor of ( 1)A a M M+= = − = 22 33 23 32( )a a a a= −  

 1 2
12 12 12 12Cofactor of ( 1)A a M M+= = − = − 21 33 23 31( )a a a a=− −  

 1 2
13 13 13 13Cofactor of ( 1)A a M M+= = − = 21 32 22 31a a a a= − . 

Cofactors for remaining elements can be obtained in the similar pattern. 
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Remark. It should be noted that if A is any matrix, then its determinant is the sum of products of 
elements of any row and their corresponding cofactors. Thus, 

 1 1 2 2 ...i i i i in inA a A a A a A= + + + . 

4.2.3. Example. Solve for x:  

5 3
2 3
x = 5. 

Solution. Here, 5 3
2 3
x = 5 ⇒  15x−6 = 5 ⇒  15x = 11 ⇒  x = 11

15
. 

4.2.4. Example. Write the minors and co-factors of all the elements in 
1 0 2
3 0 2
5 1 3

 
 
 
 
 

. 

Solution. Let andi j i jM A  denotes the minor and co-factor of the element i ja  respectively, then 

11 11
0 2

minor of 0 2 2
1 3

M a= = = − = −  and ( )1 1
11 111 2A M+= − = − . 

12 12
3 2

minor of 9 10 1
5 3

M a= = = − = −  and ( )1 2
12 121 1A M+= − = . 

13 13
3 0

minor of 3 0 3
5 1

M a= = = − =  and ( )1 3
13 131 3A M+= − = . 

21 21
0 2

minor of 0 2 2
1 3

M a= = = − = −  and ( )2 1
21 211 2A M+= − = . 

22 22
1 2

minor of 3 10 7
5 3

M a= = = − = −  and ( )2 2
22 221 7A M+= − = − . 

23 23
1 0

minor of 1 0 1
5 1

M a= = = − =  and ( )2 3
23 231 1A M+= − = − . 

31 31
0 2

minor of 0 0 0
0 2

M a= = = − =  and ( )3 1
31 311 0A M+= − = . 

32 32
1 2

minor of 2 6 4
3 2

M a= = = − = −  and ( )3 2
32 321 4A M+= − = . 

33 33
1 0

minor of 0 0 0
3 0

M a= = = − =  and ( )3 3
33 331 0A M+= − = . 

4.2.5. Example. If A =
1 2 3
4 5 6
7 8 9

 
 
 
  

 find | |A  by expanding along first row and second column and verify 

that the value is same. 
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Solution. Expanding by first row, we have 

 A  = 1(−1)1+1 5 6
8 9

 + 2( −1)1+2 4 6
7 9

+ 3(−1)1+3 4 5
7 8

 = 1(−3) −2(−6) +3(−3) = 0. 

Again, expanding by second column, we have 

A =2(−1)2+1 4 6
7 9

+5(−1)2+2 1 3
7 9

+8(−1)2+3 1 3
4 6

 = −2(36 −42)+5(9 −21)−8(6−12) = 0. 

Thus the determinant obtained by expanding along different rows are same. 

4.2.6. Determinant using Sarrus Method.  

 Let A = 
11 12 13

21 22 23

31 32 33

a a a
a a a
a a a

 
 
 
  

.  

First write five columns in the following order:  

11 12 13 11 12

21 22 23 21 22

31 32 33 31 32

                    
    

                    
      

                    

a a a a a

a a a a a

a a a a a
 

The value of |A| is given by adding the products of the diagonals going from top to bottom and 
subtracting the products of the diagonals going from bottom to top. Thus 

( ) ( )11 22 33 12 23 31 13 21 32 31 22 13 32 23 11 33 21 12| |  a a a a a a a a a a a a a a a a aA a+ + −= + +  

Note. Sarrus Method is used only for determinant of order 2 and 3. 

4.2.7. Example. Evaluate the determinant 
1 2 1
5 5 0
2 1 4

 using Sarrus Method. 

Solution. By Sarrus diagram,  

 

 
1                2              1             1              1 

5           5           0           5          5 

 2           1           4          2           1 
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we have,  |A| = (1.5.4 + 2.0.2 + 1.5.1) −  (2.5.1+ 1.0.1 + 4.5.1) 

           = 25−30 = -5. 

4.2.8. Exercise. 

1. Which of the following matrices are singular and which are non-singular. 

 (i) 
4 2
6 3

 
 
 

  (ii) 7 5
0 3

 
 
 

   (iii) 
1 1 1
0 2 2
4 3 7

− 
 
 
  

 

2. For what value of λ, the matrix 7 1
2

 
 λ 

 is singular. 

3. Find the minors and cofactors the following matrices:  

 (i) 1 1
2 1

− 
 − 

   (ii) 7 1
2 3

 
 
 

  

4. Solve the following equations for x:  

  (i) 3 4
8

0 2
x

=   (ii) 6
5

x x
x
=−

−
 

5. Find the following determinants.  

 (i) 2 3
1 2−

   (ii) 
2 3 5
1 3 1
2 4 1

    (iii) 
b c a a

b c a b
c c a b

+
+

+
 

6. Find the determinant using Sarrus Method: 
2 3 5
1 3 1
2 4 1

 

Answer. 

1.   (i) Singular. (ii) Non-singular. (iii) Non-singular. 

2.   λ = 2
7

. 

3.   (i) 11 12 21 221, 2, 1 , 1M M M M=− = = − = , 11 12 21 221, 2, 1, 1A A A A= − = − = =  

   (ii) 11 12 21 223, 2, 1 , 7M M M M= = = = , 11 12 21 223, 2, 1, 7A A A A= = − = − =  

4.  (i) 4
3

  (ii) 3 , 2x = − −  

5.  (i) − 7   (ii) − 9 (iii) 4abc 

6. – 9 
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4.3. Properties of Determinants.  

Using the following properties of determinants, we can evaluate the determinant of a matrix without 
using the evaluation methods discussed earlier. 

We will use the notations 1 2 1 2, ,..., , ,...R R C C  to denote row one, row two, …, column one, column two, ... 
etc. of a matrix. 

1. The value of determinant remains unchanged if rows (columns) are changed into columns (rows), that 
is, if A is a matrix, then |A| = |A′|. 

2. If two adjacent rows (columns) of a determinant are interchanged then the value of determinant is 
multiplied by -1.  

3. If any two rows (columns) are identical then the value of the determinant is zero.  

4. If any two rows (columns) are multiples of each other then the determinant is zero.  

5. If all entries of any row (column) are zero then the determinant is zero. 

6. If each element in a row (column) of a determinant is multiplied by any scalar then the determinant is 
also multiplied by same scalar.  

7. If every element of any row (column) is the sum (or difference) of two or more quantities, then the 
determinant can also be expressed as the sum (difference) of two or more determinants of same order.  

For example, let 
7 2 1 5 2 2 1 5 2 1 2 2 1
4 5 2 3 1 5 2 3 5 2 1 5 2
3 3 2 2 1 3 2 2 3 2 1 3 2

+
∆ = = + = +

+
 

8. If to every element of a row (column) of a determinant be added or subtracted equal multiples of the 
corresponding elements of one or more rows (or columns) then the value of the determinant 
unchanged.  

9. The determinant of product of square matrices of same order is equal to the product of the 
determinants of matrices, that is, |AB| = |A|.|B| 

4.3.1. Example. Without expanding show that following determinant vanishes. 

(i) 
1 3 5
2 6 10
1 1 8

  (ii) 
29 1 4
33 5 4
17 3 2

 

Solution. (i) Let ∆ = 
1 3 5
2 6 10
1 1 8

 

Applying  R2 → R2 − 2R1 and using property 5,we get 
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1 3 5 1 3 5

2 2 6 6 10 10 0 0 0 0
1 1 8 1 1 8

∆ = − − − = =  

        

(ii) Let     ∆ = 
29 1 4
33 5 4
17 3 2

 

 Applying 1 1 37C C C→ − and using property 3, we get  

     
29 28 1 4 1 1 4
33 28 5 4 5 5 4 0
17 14 3 2 3 3 2

−
∆ = − = =

−
 

4.3.2. Example. Using properties of determinants, show that 

2

2

2

1
1 0
1

a a bc
b b ca
c c ab

−

− =

−

. 

Solution : Let  ∆=

2

2

2

1
1
1

a a bc

b b ca

c c ab

−

−

−

  then  

   

2

2

2

1 1
1 1

11

a a a bc
b b b ca

c abc c

−
∆ = + −

−

2

2

2

1 1
1 1

11

a a a bc
b b b ca

c abc c

= −  

Multiplying R1,R2 and R3 of second term of ∆ by a, b and c, we get 

  

2 2

2 2

2 2

1
11

1

a a a a abc

b b b b abc
abc

c c c c abc

∆ = −

2 2

2 2

2 2

1 1

1 1

1 1

a a a a
abcb b b b
abc

c c c c

= −  

 ⇒  

2 2

2 2

2 2

1 1
1 1
1 1

a a a a

b b b b

c c c c

∆ = −   

Applying  C1 ↔ C2 in second term of ∆, we get 

     

2 2

2 2

2 2

1 1

1 1 0

1 1

a a a a

b b b b

c c c c

∆ = − =  
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4.3.3. Example. Show that 32 3 2 4 3 2
3 6 3 10 6 3

a a b a b c
a a b a b c a
a a b a b c

+ + +
+ + + =
+ + +

.  

Solution : Let   

2 3 2 4 3 2 2 3 4 3 2 2 2 4 3 2
3 6 3 10 6 3 3 6 10 6 3 3 3 10 6 3

1 1
2 3 4 3 2 2 2 4 3 2
3 6 10 6 3 3 3 10 6 3

2 3 4 3 2
3 6 10

a a b a b c a a a b c a b a b c
a a b a b c a a a b c a b a b c
a a b a b c a a a b c a b a b c

a a a b c a b c
a a a b c ab a b c
a a a b c a b c

a a a b c
a a a b c
a a a

+ + + + + + +
∆ = + + + = + + + + +

+ + + + + + +

+ + + +
= + + + + +

+ + + +

+ +
= + +

+
0

6 3b c
+

+

 

⇒  3 2 2
1 1 1 1 1 1 1 1 1

2 3 4 2 3 3 2 3 2 2 3 4 2 3 3 2 3 2
3 6 10 3 6 6 2 6 3 3 6 10 3 6 6 3 6 3

a a a a a b a a c
a a a a a b a a c a a b a c
a a a a a b a a c

∆ = + + = + +  

⇒  3 2 2
1 1 1
2 3 4 . 0 . 0
3 6 10

a a b a c∆ = + +  

Applying  C2 → C2 − C1, C3 → C3 − C1, we get  

 3 3 3 3
1 0 0

1 2
2 1 2 1 (7 6)

3 7
3 3 7

a a a a∆ = = × × = − =  

4.3.4. Example. Evaluate 
1 1 1

x y y z z x
z x y
+ + +

.  

Solution: Let ∆ = 
1 1 1

x y y z z x
z x y
+ + +

 

Applying  1 1 2R R R→ + , we get 

   ∆ =
1 1 1

x y z x y z x y z
z x y

+ + + + + +
 = ( )

1 1 1

1 1 1
x y z z x y+ + = 0 

as first and third rows are identical. 



94 Business Mathematics–I 

4.3.5. Example. Show that 

2

2 3

2

( )
( ) 2 ( )

( )

b c ba ca
ab c a cb abc a b c
ac bc a b

+

+ = + +

+

. 

Solution. Let 

2

2

2

( )
( )

( )

b c ba ca

ab c a cb

ac bc a b

+

∆ = +

+

  

Multiplying R1, R2 and R3 by a, b, and c respectively, we get  

   
( )

( )
( )

2 2 2

22 2

22 2

1
b c a ba ca

ab c a b cb
abc

ac bc a b c

+

∆ = +

+

 

Taking a, b and c common from C1,C2 and C3, we get 

   

2 2 2

2 2 2

2 2 2

( )
( )

( )

b c a a
abc b c a b
abc

c c a b

+

∆ = +

+

 

Applying  1 1 3 2 2 3andC C C C C C→ − → − , we get  

   

2 2 2

2 2 2

2 2 2 2 2

( ) 0
0 ( )

( ) ( ) ( )

b c a a

c a b b

c a b c a b a b

+ −

∆ = + −

− + − + +

 

2

2

2

( )( ) 0
0 ( )( )

( )( ) ( )( ) ( )

b c a b c a a

c a b c a b b

c a b c a b c a b c a b a b

+ + + −

= + + + −

+ + − − + + − − +

 

Taking a b c+ + common from C1 and C2, we get 

   

2

2 2

2

0

( ) 0

( )

b c a a

a b c c a b b

c a b c a b a b

+ −

∆ = + + + −

− − − − +

 

Applying  3 3 1 2R R R R→ − − , we get 

    

2

2 2

0

( ) 0
2 2 2

b c a a

a b c c a b b
b a ab

+ −

∆ = + + + −
− −

  

Applying  1 1 2 2( ), ( )C C a C C b→ →  
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2 2
2

2 2

0
( ) 0

2 2 2

ab ac a a
a b c bc ba b b

ab
ab ab ab

+ −
+ +

∆ = + −
− −

 

Applying  1 1 3 2 2 3,C C C C C C→ + → +  

   

2 2
2

2 2( )

0 0 2

ab ac a a
a b c b bc ba b

ab
ab

+
+ +

∆ = +   

Taking a, b and 2ab common from R1, R2 and R3 respectively  

    
2( ) . 2

0 0 1

b c a a
a b c ab ab b c a b

ab

+
+ +

∆ = +  

Now expanding along R3, we get 

   2 2 32 ( ) 2 ( ) [( )( ) ) 2 ( )
b c a

ab a b c ab a b c b c c a ab abc a b c
b c a
+

∆ = + + = + + + + − = + +
+

 

4.3.6. Example. Show that 2
b c c a a b a b c
q r r p p q p q r
y z z x x y x y z

+ + +
+ + + =
+ + +

.  

Solution : Let  
b c c a a b
q r r p p q
y z z x x y

+ + +
∆ = + + +

+ + +
 

Applying  1 1 2 3C C C C→ + + , we get  

   
2( )
2( ) 2
2( )

a b c c a a b a b c c a a b
p q r r p p q p q r r p p q
x y z z x x y x y z z x x y

+ + + + + + + +
∆ = + + + + = + + + +

+ + + + + + + +
  

Applying 2 2 1 3 3 1,C C C C C C→ − → − , we get 

   2
a b c b c
p q r q r
x y z y z

+ + − −
∆ = + + − −

+ + − −
 

Applying  1 1 2 3C C C C→ + + , we get 

   2 2
a b c a b c
p q r p q r
x y z x y z

− −
∆ = − − =

− −
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4.3.7. Exercise. 

1. Without expanding show that following determinant vanishes. 

(i)
1 3 5
2 6 10
31 11 38

 (ii) 
8 2 7

12 3 5
16 4 3

  (iii)
43 1 6
35 7 4
17 3 2

 (iv) 

2

2

2

1

1

1

a bc
a

b ac
b

c ab
c

 

(v) 
42 1 6
28 7 4
14 3 2

  (vi) 
1
1
1

a abc
b abc
c abc

 (vii) 
1
1
1

a b c
b c a
c a b

+
+
+

  (viii) 
1 a abc
1 b abc
1 c abc

 

2. Show that 2 2 2( )( )
a b c
b c a a b c ab bc ca a b c
c a b

= + + + + − − −   

3. Show that  

 (i) 2( ) ( 2 )
x a a
a x a x a x a
a a x

= − +     (ii) 

2

2 2 2 2

2

4
a ab ac

ba b bc a b c

ac bc c

−

− =

−

  

 (iii) 

2

2

2

( )( )( )( )
a a bc

b b ca a b b c c a ab bc ca

c c ab

= − − − + +   (iv) 
1
1 ( )( )( )
1

a bc
b ca b a c a c b
c ab

= − − −   

(v) 

3

3

3

1
1 ( )( )( )( )
1

x x

y y x y y z z x x y z

z z

= − − − + +  

4. Show that  

 (i) 35 4 4 2
10 8 8 3

x y x x
x y x x x
x y x x

+
+ =
+

   (ii) 32 3 2 4 3 2
3 6 3 10 6 3

a a b a b c
a a b a b c a
a a b a b c

+ + +
+ + + =
+ + +

 

5. Show that  

 (i) 3 3 33
b c a b a
c a b c b abc a b c
a b c a c

+ −
+ − = − − −
+ −

  (ii) 2( )( )
b c a b
c a c a a b c a c
a b b c

+
+ = + + −
+

 

4.4. Adjoint of a Matrix. 

Let i j n n
A a

×
 =    be a square matrix. Then the adjoint of matrix A is defined as 

adjA = [Aij]′ 

where Aij is the corresponding co-factor of aij. 
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4.4.1. Example. Find the adjoint of matrix A 1 2
3 4

 
=  
 

.  

Solution. Given that 1 2
3 4

A
 

=  
 

. 

By definitions of Cofactors: 

11 11cofactor of 4A a= =  

   12 12cofactor of 3A a= = −  

  21 21cofactor of 2A a= = −  

  22 22cofactor of 1A a= =  

Thus, 11 12

21 22

4 3 4 2
adj

2 1 3 1
A A

A
A A

′− −     
= = =     − −    

. 

4.4.2. Theorem. If A is square matrix of order n×n, then prove that  

   A (adj A) = A In= (adj A)A. 

4.4.3. Example. Find adjoint of 1 2
3 5

A
 

=  
 

 and also verify that 2(adj ) | | (adj )A A A I A A= = .  

Solution : Given that  1 2
3 5

A
 

=  
 

 

Cofactors of elements of A are: 

11 11cofactor of 5A a= = , 12 12cofactor of 3A a= = −  

  21 21cofactor of 2A a= = − , 22 22cofactor of 1A a= =  

Thus, adjA = 5 3
2 1

′− 
 − 

= 5 2
3 1

− 
 − 

 

Now    1 2
| | 5 6 1

3 5
A = = − = −  

So   A(adjA) = 2
1 2 5 2 1 0

| |
3 5 3 1 0 1

A I
− −     

= =     − −     
 

Again  (adjAA) = 2
5 2 1 2 1 0

| |
3 1 3 5 0 1

A I
− −     

= =     − −     
 

So, we get  

  2(adj ) | | (adj )A A A I A A= =  
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4.4.4. Exercise. 

1. If A = 
1 2
3 5
 
 
 

, B = 
2 0
1 5
 
 
 

 verify, adj(AB) = (adjB) (adjA). 

2. Find the adjoint of matrix 
1 1 2
0 1 2
1 1 3

A
 
 =  
  

. Also show that 3.(adj ) | | . (adj ).A A A I A A= = . 

3. Find the adjoint of following matrices. 

  (i) 5 4
3 2

 
 
 

   (ii) a b
c d
 
 
 

 

4.5. Inverse of a Matrix. 

A square matrix of order n is invertible if there exist a square matrix B of same order such that AB = In = 
BA. 

In such a case, we say that inverse of A is B and inverse of B is A and we write  

A –1 = B, B –1 = A . 

If inverse of a matrix exists, then it is called an invertible matrix. 

4.5.1. Theorem. A square matrix is invertible iff it is non-singular. 

Proof. Let A be an invertible matrix. Then, there exists a matrix B such that  

   nAB I BA= =  

⇒  | | | |nAB I=  

⇒  | | | | 1A B =  

⇒  | | 0A ≠  

⇒  A is a non-singular matrix. 

Conversely, let A be a non-singular square matrix of order n that is, | | 0A ≠ . Then, we know that 
 (adj ) | | (adj )nA A A I A A= =  

Dividing both sides by | |A , 

⇒  1 1adj adj
| | | |nA A I A A

A A
   

= =   
   

 

⇒ 1 1 adj
| |

A A
A

− =  

Hence, A is an invertible matrix. 

Remark. Due to the above theorem, we can say that the inverse of a non-singular matrix A is given by 

  1

| |
adj A

A
A

− =  
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4.5.2. Theorem. If A is an invertible square matrix, then A′  is also invertible and  

   ( ) ( )1 1' .A A− − ′=  

Proof. Since A is an invertible matrix, so | | 0A ≠ , and thus  | | 0A′ ≠ , which implies A′  is also 
invertible. 

Now,  1 1
nAA I A A− −= =  

⇒ ( ) ( ) ( )1 1
nAA I A A− −′ ′= =  

⇒ ( ) ( ) ( )1 1
nA A I A A− −′ ′′ ′= =  

⇒ ( ) ( )1 1A A− − ′′ =  

4.5.3. Theorem. If A and B are invertible matrices of the same order, then so is AB and 

    ( ) 1 1 1AB B A− − −=  

Proof. It is given that A and B are invertible matrices, therefore | | 0 and | | 0A B≠ ≠  

⇒ | || | 0A B ≠  

⇒ | | 0AB ≠  

⇒  AB is a invertible matrix. 

Now,  

  ( )( ) ( ) ( )1 1 1 1 1 1
n nAB B A A BB A A I A AA I− − − − − −= = = =  

and,  

  ( )( ) ( ) ( )1 1 1 1 1 1
n nB A AB B A A B B I B B B I− − − − − −= = = =  

Thus,     ( )( ) ( )( )1 1 1 1
nAB B A I B A AB− − − −= =  

Hence,    ( ) 1 1 1.AB B A− − −=  

4.5.4. Theorem. Inverse of an invertible matrix is always unique. 

Proof. Let A be an invertible matrix of order n × n having matrices B and C as its two inverses. Then, 

nAB BA I= =  and nAC CA I= =  
Now, nAB I=  ⇒ ( ) nC AB C I=  

⇒ ( ) nCA B C I=  

⇒ n nI B C I=  
⇒ B C=  
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Hence, inverse of a matrix is unique. 

4.5.5. Corollary. If A is an invertible matrix, then 1 1( )A A− − = . 

Proof. We have, 

  1 1AA I A A− −= =  

⇒  A is the inverse of A-1, that is, 1 1( )A A− −=  . 

4.5.6. Example. Find the inverse of A = 1 1
1 1

 
 − 

 

Solution : Given that 1 1
1 1

A  
=  − 

 

Therefore, | | 1 1 2 0A = + = ≠ , which implies A−1 exists. 

Now, by definition  

  11 11cofactor of 1A a= =  
  12 12cofactor of 1A a= =  
 21 21cofactor of 1A a= = −  
 22 22cofactor of 1A a= =  

Thus, 1 1 1 1
adj

1 1 1 1
A

′ −   
= =   −   

 

Now 1

1 1
1 11 1 2 2adj
1 1 1 1| | 2

2 2

A A
A

−

 − − 
= = =   

   
  

. 

4.5.7. Example. If A = 2 7
1 4
 
 
 

, show that A2−6A + I = O. Hence find A–1. 

Solution. Here, A2 = A.A = 2 7 2 7
1 4 1 4
   
   
   

 =  
 
 

11 42
6 23

 

So   A2−6A + I =  
 
 

11 42
6 23

−6  
 
 

2 7
1 4

+  
 
 

1 0
0 1

 =  
 
 

11 42
6 23

 −   
 
 

12 42
6 24

 +  
 
 

1 0
0 1

 =  
 
 

0 0
0 0

. 

Hence,   A2−6A + I = O. 

Now using this we have to find A–1. 

   A2−6A + I = O ⇒    6A−A2 = I  

Now pre-multiplying both sides by A–1 we have, 

   A–1 = 6I−A 

So,   A–1 = 6  
 
 

1 0
0 1

−  
 
 

2 7
1 4

 = − 
 − 

4 7
1 2

. 
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4.5.8. Exercise. 

1. Find the inverse of the matrix
2 1 1
1 2 1

1 1 2

− 
 − − 
 − 

 and verify your answer. 

2. For the matrices A = 2 1
4 2

− 
 
 

, B =
6 7
8 9
 
 
 

, verify that (AB)–1 = B –1A –1. 

3. Find the inverse of the matrix A = 1
a b

bcc
a

 
 + 
 

 and show that  

aA−1=(a2+bc+1)I2−aA. 

4. If A = 
1 2 2
2 1 2
2 2 1

 
 
 
  

, show that A2−4A−5I = O and hence find A–1. 

4.6. Inverse of a Matrix by using Elementary Operations. 

4.6.1. Elementary Operations. To obtain inverse of a matrix sometimes we use some operations on a 
given matrix called elementary operations. 

These are of two types: 

1. Elementary row operations. Elementary operation on rows of a matrix are known as elementary 
row operation. Following are the various types of elementary row operations 

i) The interchange of any two rows. By Ri↔Rj, we mean interchanging ith row of the given matrix 
with jth row. 

ii) The multiplication of the elements of row by a non-zero number. By Ri →  k Ri, we mean that the 
elements of ith row of the given matrix are multiplied by k. 

iii) Adding to the elements of a row, the corresponding elements of any other row multiplied by 
any scalar k. By Ri→Ri +kRj, we mean that the elements of jth row of the given matrix are multiplied 
by k and then the elements are added to corresponding elements of ith row. 

Remark. An elementary row operation on the product of two matrices is equivalent to the same 
elementary row operation on the pre-factor. 

4.6.2. To find inverse of a square matrix by using elementary row operation. 

Let A be a non-singular matrix. So, it can be written as A = IA, where I is identity matrix. Now apply 
elementary row operations on A to convert it to I and on right side apply these operations as applied on 
left side to I. If I is converted to B, then this matrix B is inverse of A. 

2. Elementary column Operations. The similar operations are defined for columns and known as 
elementary column operations. Also to find inverse of a matrix A this time we will consider A = AI 
and then apply elementary columns operations on A to convert it to I and on right side apply these 
operations as applied on left side to I. If I is converted to B, then this matrix B is inverse of A. 
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4.6.3. Example. Find inverse using elementary row operations of 1 3
1 4

A
 

=  
 

.  

Solution : Given that  1 3
1 4

A
 

=  
 

, then  1 3
| | 4 3 0

1 4
A = = − ≠ . So A−1 exists.  

Now let A = IA, which implies  1 3 1 0
1 4 0 1

A   
=   

   
 

Applying  R2 → R2 − R1, we get  

1 3 1 0
0 1 1 1

A   
=   −   

 

Applying  R1 → R1 − 3R2, we get 

   1 0 4 3
0 1 1 1

A
−   

=   −   
 

Therefore, 1 4 3
1 1

A− − 
=  − 

.  

4.6.4. Example. Find the inverse of matrix 1 3
1 4
 
 
 

 using elementary column operation.  

Solution. Clearly A is invertible. 

Now let A = AI, which implies  1 3 1 0
1 4 0 1

A   
=   

   
. 

Applying C2 → C2 − 3C1, we get  

1 0 1 3
1 1 0 1

A
−   

=   
   

 

Applying  C1 → C1 − C2, we get 

   1 0 4 3
0 1 1 1

A
−   

=   −   
 

Therefore, 1 4 3
1 1

A− − 
=  − 

.  

4.6.5. Exercise. 

1. Find the inverse of matrix 2 1
5 3

A
 

=  
 

 by using elementary row operations. 

2. Find the inverse of the matrix A = 
1 0 0
3 2 0
1 1 2

 
 
 
  

 using elementary row operations. 
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3. Using elementary column operations, find the inverse of matrix 
2 1 3
4 1 0
7 2 1

A
 
 = − 
 − 

. 

4. Find the inverse of A = 
1 1 2
0 2 3
3 2 4

− 
 − 
 − 

 by using elementary column operations. 

4.7. Solution of Simultaneous Linear Equations. 

A system of linear equation has either unique solution or infinitely many solutions or no solution. If a 
system of linear equations has a solution (whether unique or infinite), then the system is said to be 
consistent and if the system has no solution, it is said to be inconsistent.  

4.7.1. Cramer’s Rule to Solve the Linear Equations. 

1. System of Linear Equation of two variables x and y. 

First we consider a system of linear equations in two variables x and y: 

   1ax by d+ =  
   2cx dy d+ =  

We define D as the determinant obtained from the coefficients of x and y, D1 and D2 are determinants 

obtained by replacing first and second column respectively of D by 1

2

d
d
 
 
 

. Thus, 

  1 1
1 2

2 2
, ,

d b a da b
D D D

d d c dc d
= = =   

If D ≠ 0, then the system has a unique solution given by 

     1 2,D Dx y
D D

= = . 

2. System of Linear Equation of two variables x, y and z. 

Now we consider a system of linear equations in three variables x and y and z: 

      1 1 1 1a x b y c z d+ + =  

     2 2 2 2a x b y c z d+ + =  

     3 3 3 3a x b y c z d+ + =  

Then as defined in case of two variables, we define the following: 

 
1 1 1 1 1 1 1 1 1 1 1 1

2 2 2 1 2 2 2 2 2 2 2 3 2 2 2

3 3 3 3 3 3 3 3 3 3 3 3

, , ,
a b c d b c a d c a b d

D a b c D d b c D a d c D a b d
a b c d b c a d c a b d

= = = =  

If D≠0, then the system has unique solution and given by 

     1 2 3, ,D D Dx y z
D D D

= = =       

Remark. If D = 0, then the system has either infinitely many solutions or no solution. However, the 
systems with such solutions are not included in the syllabi. 
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4.7.2. Example. Solve the following system of equations using Cramer’s Rule  

    5
2 15

x y
x y

+ =
+ =

 

Solution. Given system of equations is   

    5
2 15

x y
x y

+ =
+ =

 

Then, by definition 

  1 1
2 1 1 0

1 2
D = = − = ≠  

Therefore, the system has a unique solution.  

Now   1
5 1

10 15 5
15 2

D = = − = −  

and   2
1 5

15 5 10
1 15

D = = − = . 

Then, by Cramer’s Rule, the unique solution is given by  

   1 5 5
1

Dx
D

= = − =− ,  2 10 10
1

Dy
D

= = = . 

So, 35, 25x y= − =  is a solution.  

4.7.3. Exercise. Solve the following system of equations by using Cramer’s Rule: 

1.   
1

3 5 6 4
9 2 36 17

x y z
x y z

x y z

+ + =
+ + =

+ − =
   2.  

2 3 0
3 4

3 4 3

y z
x y
x y

− =
+ = −
+ =

  3. 2 3 7
4 5 3

x y
x y
+ =
− =

 

4.  The sum of three numbers is 6. If we multiply the third number by 2 and add the first number to 
it, we get 7. By adding second and third numbers to three times the first number, we get 12. Find 
the numbers. 

5.  The perimeter of a triangle is 45 cm. The longest side exceeds the shortest side by 8 cm and sum 
of the length of the longest and the shortest side is twice the length of the other side. Find the 
lengths of sides of the triangle. 

6.  Find a, b, c when 2( ) , (1) 1, (2) 2, (0) 4f x ax bx c f f f= + + = = = . Determine the quadratic function 
f(x) and find its value when x = 0.  

Answers. 

1.  x = 1 1, 1,
3 3

y z= =−   2. x = 5, y = − 3, z = − 2 

3. 2, 1x y= =     4. 3,1,2   

5. 19 cm, 15 cm, 11 cm   6. 22 5 4, 4x x− +  
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4.7.4. Matrix Method to solve system of linear equations.  

1. System of Linear Equation of two variables x and y. 

First we consider a system of linear equations in two variables x and y:   

1 1 1a x b y d+ =  

    2 2 2a x b y d+ =  

We define A = 1 1 1

2 2 2
, ,

a b x d
X B

a b y d
     

= =     
     

 

Then the given system of equations can be written in matrix form as 

AX=B. 

If |A| ≠ 0, then the system has unique solution given by 

    X = A−1 B. 

2. System of Linear Equation of three variables x, y and z. 

First we consider a system of linear equations in two variables x, y and z: 

    1 1 1 1a x b y c z d+ + =   
    2 2 2 2a x b y c z d+ + =  
    3 3 3 3a x b y c z d+ + =  

Define A = 
1 1 1 1

2 2 2 2

3 3 3 3

, ,
a b c x d
a b c X y B d
a b c z d

     
     = =     
          

. 

If |A| ≠ 0, then the system has unique solution given by 

     X = A−1 B 

Remark. If |A| = 0, then the system has either infinitely many solutions or no solution. However, the 
systems with such solutions are not included in the syllabi. 

4.7.5. Example. Solve the following system of equations by matrix method: 

    1
2 2

x y
x y
+ =
+ =

 

Solution. The given system of equations can be represented in matrix form as AX = B where  

   1 1 1
, ,

2 1 2
x

A X B
y

     
= = =     
     

. 

Now, | | 1 2 1 0A = − = − ≠ . 

Thus, the system has a unique solution given by  

   1X A B−=  
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We need to obtain the inverse of A, for this cofactors of elements of A are    
 11 12 21 221 , 2 , 1 , 1A A A A= = − = − = . 

Thus,   1 2 1 1
adj

1 1 2 1
A

′− −   
= =   − −   

 

and     1 1 11 adj
2 1| |

A A
A

− − 
= =  − 

. 

Therefore, the solution can be obtained from 

     1 1 1 1
2 1 2 0

x
y

−       
= =       −       

. 

Hence x = 2, y = −1 is a solution. 
4.7.6. Exercise. Solve the following system of equations: 

1. 
2 8 5 6

2
2 2

x y z
x y z

x y z

+ + =
+ + = −

+ − =
  2. 

2 3 3 10

1 1 1 10

3 1 2 13

x y z

x y z

x y z

− + =

+ + =

− + =

 

Answers.  

1. 3, 2, 1x y z= − = = −  

2. Use 1
x

 = u, 1
y

= v, 1
z

= w, then solving the system we will obtain u = 2, v = 3, w = 5.  

4.8. Check Your Progress. 

1. Write the minors and cofactors of all elements of 
5 2 1
3 0 2
8 1 3

 
 
 
  

 

2. For the matrix A = 2 3
4 5

− 
 
 

, find the numbers a and b such that A2 + aA + bI = O. Hence find A−1. 

Answers. 

1.  11 12 13 21 22 23 31 32 332, 7, 3, 5, 7, 11, 4, 7, 6M M M M M M M M M= − = − = = = = − = = = −  

 11 12 13 21 22 23 31 32 332, 7, 3, 5, 7, 11, 4, 7, 6A A A A A A A A A= − = = = − = = = = − = −  

4.9. Summary. In this chapter, we discussed about determinants of matrices, invertible matrices and the 
role played by an invertible matrix to solve a system of linear equations having a unique solution. 
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